Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 24;13(7):7987-7996.
doi: 10.1021/acsami.0c21309. Epub 2021 Feb 9.

Multifunctional Organic Fluorescent Probe with Aggregation-Induced Emission Characteristics: Ultrafast Tumor Monitoring, Two-Photon Imaging, and Image-Guide Photodynamic Therapy

Affiliations

Multifunctional Organic Fluorescent Probe with Aggregation-Induced Emission Characteristics: Ultrafast Tumor Monitoring, Two-Photon Imaging, and Image-Guide Photodynamic Therapy

Haijun Ma et al. ACS Appl Mater Interfaces. .

Abstract

The development of multifunctional photosensitizers (PSs) with aggregation-induced emission (AIE) properties plays a critical role in promoting the progress of the photodynamic therapy (PDT). In this work, a multifunctional PS (named DSABBT NPs) with AIE activity has been designed and prepared to carry out ultrafast staining, excellent two-photon bioimaging, and high-efficiency image-guided PDT. Simply, DSABBT with AIE characteristic was synthesized by one-step Schiff reaction of 4-(diethylamino)-salicylaldehyde (DSA) and 4,7-bis(4-aminophenyl)-2,1,3-benzothiadiazole (BBT). Then, DSABBT and DSPE-PEG2000-cRGD generate nanoparticles (NPs) easily in an ultrapure water/tetrahydrofuran mixture through a facile nanoprecipitation at room temperature. We found that DSABBT NPs exhibit bright solid-state fluorescence with large stokes shifts (180 nm) and two-photon absorption cross-section (1700 GM). Importantly, DSABBT NPs exhibited excellent ability of ultrafast staining and two-photon imaging, which can readily label suborganelles by subtly shaking the living cells for 5 s under mild conditions. Moreover, DSABBT NPs displayed high singlet oxygen (1O2) generation capacity and remarkable image-guided PDT efficiency. Therefore, DSABBT NPs can act as the promising candidate for multifunctional PSs, which can destroy cancer cells and block malignant tumor growth via the production of reactive oxygen species upon irradiation conditions. These outcomes provide us with a selectable strategy for developing multifunctional theranostic systems.

Keywords: aggregation-induced emission; image-guide photodynamic therapy; multifunctional nanoparticles; two-photon; ultrafast monitoring.

PubMed Disclaimer

MeSH terms

LinkOut - more resources