Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2021 Mar;9(3):265-278.
doi: 10.1158/2326-6066.CIR-20-0555. Epub 2021 Feb 9.

The IKZF1-IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages

Affiliations
Observational Study

The IKZF1-IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages

Dimitrios Mougiakakos et al. Cancer Immunol Res. 2021 Mar.

Abstract

The bone marrow niche has a pivotal role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the multiple myeloma bone marrow microenvironment. Myeloma-associated macrophages (MAM) in the bone marrow niche are M2 like. They provide nurturing signals to multiple myeloma cells and promote immune escape. Reprogramming M2-like macrophages toward a tumoricidal M1 phenotype represents an intriguing therapeutic strategy. This is especially interesting in view of the successful use of mAbs against multiple myeloma cells, as these therapies hold the potential to trigger macrophage-mediated phagocytosis and cytotoxicity. In this study, we observed that MAMs derived from patients treated with the immunomodulatory drug (IMiD) lenalidomide skewed phenotypically and functionally toward an M1 phenotype. Lenalidomide is known to exert its beneficial effects by modulating the CRBN-CRL4 E3 ligase to ubiquitinate and degrade the transcription factor IKAROS family zinc finger 1 (IKZF1). In M2-like MAMs, we observed enhanced IKZF1 levels that vanished through treatment with lenalidomide, yielding MAMs with a bioenergetic profile, T-cell stimulatory properties, and loss of tumor-promoting capabilities that resemble M1 cells. We also provide evidence that IMiDs interfere epigenetically, via degradation of IKZF1, with IFN regulatory factors 4 and 5, which in turn alters the balance of M1/M2 polarization. We validated our observations in vivo using the CrbnI391V mouse model that recapitulates the IMiD-triggered IKZF1 degradation. These data show a role for IKZF1 in macrophage polarization and can provide explanations for the clinical benefits observed when combining IMiDs with therapeutic antibodies.See related Spotlight on p. 254.

PubMed Disclaimer

Comment in

References

    1. Moreau P. How I treat myeloma with new agents. Blood. 2017;130:1507–13.
    1. Kawano Y, Moschetta M, Manier S, Glavey S, Gorgun GT, Roccaro AM, et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev. 2015;263:160–72.
    1. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S, et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood. 2009;114:3625–8.
    1. Gorgun GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J, et al. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013;121:2975–87.
    1. Kim J, Denu RA, Dollar BA, Escalante LE, Kuether JP, Callander NS, et al. Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br J Haematol. 2012;158:336–46.

Publication types

MeSH terms

LinkOut - more resources