Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar-Apr;8(2):296-301.
doi: 10.1002/hep.1840080218.

Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein

Affiliations

Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein

J C Sibille et al. Hepatology. 1988 Mar-Apr.

Abstract

Like the rat peritoneal macrophage, the isolated Kupffer cell is capable of processing and releasing iron acquired by phagocytosis of immunosensitized homologous red blood cells. When erythrophagocytosis is restrained to levels which do not affect cell viability, about one red cell per macrophage, close to 50% of iron acquired from red cells is released within 24 hr in the form of ferritin. Immunoradiometric assay of the extracellular medium indicates that 160 ng ferritin are released by 10(6) Kupffer cells after 24-hr incubation at 37 degrees C. Iron release is temperature-dependent, the rate at 37 degrees C being nearly 5-fold greater than at 4 degrees C. As estimated by sucrose-gradient ultracentrifugation, ferritin released by the erythrophagocytosing Kupffer cell averages 2,400 iron atoms per molecule. When reincubated with isolated hepatocytes, this released ferritin is rapidly taken up by the cells. Via this process, hepatocytes may accumulate more than 160,000 iron atoms per cell per min. Such accumulation is not impeded by the presence of iron-loaded transferrin in the culture medium, but is markedly depressed by rat liver ferritin. In contrast to the conservation of transferrin during its interaction with hepatocytes, the protein shell of the ferritin molecule is rapidly degraded into trichloroacetic acid-soluble fragments. Ferritin-mediated transfer of iron from Kupffer cells to hepatocytes may help explain the resistance of the liver to iron deficiency as well as the liver's susceptibility to iron overload.

PubMed Disclaimer

Publication types