Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr 25;263(12):5599-606.

Cl-/HCO3- exchange modulates intracellular pH in rat type II alveolar epithelial cells

Affiliations
  • PMID: 3356700
Free article

Cl-/HCO3- exchange modulates intracellular pH in rat type II alveolar epithelial cells

E P Nord et al. J Biol Chem. .
Free article

Abstract

The role of an anion exchange pathway in modulating intracellular pH (pHi) under steady-state and alkaline load conditions was investigated in confluent monolayers of rat type II alveolar epithelial cells using the pH-sensitive fluorescent probe 2'-7'-biscarboxy-ethyl-5,6-carboxylfluorescein. Under steady-state conditions in the presence of 25 mM HCO3-, 5% CO2 at pHo 7.4, pHi was 7.32 in a Na+-replete medium and 7.33 in the absence of Na+. Steady-state pHi was 7.19 in a nominally HCO3(-)-free medium at pHo 7.4, and 7.52 in a Cl(-)-free medium, with both values significantly different from that obtained in the presence of both HCO3- and Cl-. Monolayers in which pHi was rapidly elevated by removal of HCO3-/CO2 from the bathing medium demonstrated an absolute requirement for Cl- to recover toward base-line pHi. The Km of Cl- for the external site of the exchange pathway was 11 +/- 1 mM. Recovery of pHi from the alkaline load in the presence of Cl- was inhibited 60% by the stilbene derivative 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Removal of Cl- from the medium of cells bathed in HCO3-/CO2 resulted in a rapid increment in pHi which returned to base line when Cl- was reintroduced into the bathing medium. In contrast, pHi was not perturbed by removal or addition of Cl- to monolayers bathed in a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-buffered medium, indicating that HCO3- was the preferred species for transport. Recovery of pHi from an alkaline load was not affected by the presence or absence of Na+. These findings define the transport pathway as Na+-independent Cl-/HCO3- exchange. This pathway contributes importantly to determining resting pHi of pneumocytes and enables the cell to recover from an alkaline load.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources