Potential SARS-CoV-2 Immune Correlates of Protection in Infection and Vaccine Immunization
- PMID: 33573221
- PMCID: PMC7912691
- DOI: 10.3390/pathogens10020138
Potential SARS-CoV-2 Immune Correlates of Protection in Infection and Vaccine Immunization
Abstract
Both SARS-CoV-2 infections and vaccines induce robust immune responses. Current data suggested that high neutralizing antibody titers with sustained Th1 responses might correlate with protection against viral transmission and disease development and severity. In addition, genetic and innate immune factors, including higher levels of type I interferons, as well as the induction of trained immunity and local mucosal immunity also contribute to lower risk of infection and amelioration of disease severity. The identification of immune correlates of protection will facilitate the development of effective vaccines and therapeutics strategies.
Keywords: SARS-CoV-2; T-cell immunity; Th1 responses; innate immunity; mucosal immunity; neutralizing antibody; trained immunity; type I interferon.
Conflict of interest statement
The authors declare no conflict of interest.
References
-
- Thatcher S.E., Zhang X., Howatt D.A., Lu H., Gurley S.B., Daugherty A., Cassis L.A. Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor-/- mice. Arter. Thromb. Vasc. Biol. 2011;31:758–765. doi: 10.1161/ATVBAHA.110.221614. - DOI - PMC - PubMed
-
- Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280.e278. doi: 10.1016/j.cell.2020.02.052. - DOI - PMC - PubMed
-
- Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., Cao Y., Yousif A.S., Bals J., Hauser B.M., et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181:1016–1035.e19. doi: 10.1016/j.cell.2020.04.035. - DOI - PMC - PubMed
-
- Lukassen S., Chua R.L., Trefzer T., Kahn N.C., Schneider M.A., Muley T., Winter H., Meister M., Veith C., Boots A.W., et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39:e105114. doi: 10.15252/embj.2020105114. - DOI - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
