Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 30;10(2):138.
doi: 10.3390/pathogens10020138.

Potential SARS-CoV-2 Immune Correlates of Protection in Infection and Vaccine Immunization

Affiliations
Review

Potential SARS-CoV-2 Immune Correlates of Protection in Infection and Vaccine Immunization

Yongjun Sui et al. Pathogens. .

Abstract

Both SARS-CoV-2 infections and vaccines induce robust immune responses. Current data suggested that high neutralizing antibody titers with sustained Th1 responses might correlate with protection against viral transmission and disease development and severity. In addition, genetic and innate immune factors, including higher levels of type I interferons, as well as the induction of trained immunity and local mucosal immunity also contribute to lower risk of infection and amelioration of disease severity. The identification of immune correlates of protection will facilitate the development of effective vaccines and therapeutics strategies.

Keywords: SARS-CoV-2; T-cell immunity; Th1 responses; innate immunity; mucosal immunity; neutralizing antibody; trained immunity; type I interferon.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Thatcher S.E., Zhang X., Howatt D.A., Lu H., Gurley S.B., Daugherty A., Cassis L.A. Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor-/- mice. Arter. Thromb. Vasc. Biol. 2011;31:758–765. doi: 10.1161/ATVBAHA.110.221614. - DOI - PMC - PubMed
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280.e278. doi: 10.1016/j.cell.2020.02.052. - DOI - PMC - PubMed
    1. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., Cao Y., Yousif A.S., Bals J., Hauser B.M., et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181:1016–1035.e19. doi: 10.1016/j.cell.2020.04.035. - DOI - PMC - PubMed
    1. Lukassen S., Chua R.L., Trefzer T., Kahn N.C., Schneider M.A., Muley T., Winter H., Meister M., Veith C., Boots A.W., et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39:e105114. doi: 10.15252/embj.2020105114. - DOI - PMC - PubMed
    1. Wolfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Muller M.A., Niemeyer D., Jones T.C., Vollmar P., Rothe C., et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469. doi: 10.1038/s41586-020-2196-x. - DOI - PubMed