Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 12;16(2):e0246300.
doi: 10.1371/journal.pone.0246300. eCollection 2021.

Running behaviors, motivations, and injury risk during the COVID-19 pandemic: A survey of 1147 runners

Affiliations

Running behaviors, motivations, and injury risk during the COVID-19 pandemic: A survey of 1147 runners

Alexandra F DeJong et al. PLoS One. .

Abstract

The COVID-19 pandemic has influenced activity behaviors worldwide. Given the accessibility of running as exercise, gaining information on running behaviors, motivations, and running-related injury (RRI) risk during the pandemic is warranted. The purpose of this study was to assess the influence of the COVID-19 pandemic on running volume, behaviors, motives, and RRI changes from the year prior to the pandemic to the timeframe during social isolation restrictions. Runners of all abilities were recruited via social media to complete a custom Qualtrics survey. Demographics, running volume, behaviors, motivations, and injury status were assessed for the year prior to the pandemic, and during social isolation measures. Descriptive statistics and Student's t-tests were used to assess changes in running outcomes during the pandemic. Logistic regressions were used to assess the influence of demographics on running behaviors and injury. Adjusted RRI risk ratios were calculated to determine the odds of sustaining an injury during the pandemic. Alpha was set to.05 for all analyses. A total of 1147 runners (66% females, median age: 35 years) across 15 countries (96% United States) completed the survey. Runners reported increased runs per week (Mean Difference with Standard Error [MD]: 0.30 [0.05], p < .001), sustained runs (MD: 0.44 [0.05], p < .001), mileage (MD: 0.87 [0.33], p = .01), and running times of day (MD: 0.11 [0.03], p < .001) during the pandemic, yet reported less workouts (i.e. sprint intervals; MD: -0.33 [0.06], p < .001), and less motives (MD [SE]: -0.41 [0.04], p < .001). Behavior changes were influenced by running experience and age. There was 1.40 (CI: 1.18,1.61) times the RRI risk during the pandemic compared to prior to the social isolation period. The COVID-19 pandemic influenced runners' behaviors with increased training volume, decreased intensity and motivation, and heightened injury risk. These results provide insights into how physical activity patterns were influenced by large-scale social isolation directives associated with the pandemic.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1
Responses (A) by state and (B) by country. Full List of Respondents—Australia (<1%), Brazil (<1%), Cayman Islands (<1%), Canada (1%), Denmark (<1%), Germany(<1%), Greece(<1%), Hong Kong(<1%), Ireland (<1%), Mexico (<1%), Netherlands (<1%), Russia (<1%), United Arab Emirates (<1%), United Kingdom (1%), United States (96%). List of missing states: Alaska, Mississippi, Montana, West Virginia.
Fig 2
Fig 2. Descriptive outcomes for respondents by sex, years of running experience, and age.
Percentage of male and female respondents, extent of running experience, and age distribution of respondents depicted across the figure graphics. Greater number of respondents per category is depicted in darker shades of blue for experience and age histograms.
Fig 3
Fig 3
(A) Difference in number of running motives and (B) running times of day during the pandemic. (C) Motives for running and (D) running times per day before and during the pandemic by percentage responses. (E) Running locations before and during the pandemic by percentage responses. Differences in numbers of (A) running motives and (B) running times of day represented in the histograms, with increases in outcomes depicted in blue, and decreases depicted in red, and increased number of occurrences represented with darker color shades. Percentage responses for (C) running motives, (D) running times per day, and (E) running locations before and during the pandemic are depicted within the stacked bar plots.

References

    1. Hulteen RM, Smith JJ, Morgan PJ, Barnett LM, Hallal PC, Colyvas K, et al. Global participation in sport and leisure-time physical activities: A systematic review and meta-analysis. Preventive Medicine. 2017;95: 14–25. 10.1016/j.ypmed.2016.11.027 - DOI - PubMed
    1. Andersen JJ. The State of Running 2019. International Association of Athletics Federations; 2020 Mar. https://runrepeat.com/state-of-running
    1. Lavie CJ, Lee D, Sui X, Arena R, O’Keefe JH, Church TS, et al. Effects of Running on Chronic Diseases and Cardiovascular and All-Cause Mortality. Mayo Clinic Proceedings. 2015;90: 1541–1552. 10.1016/j.mayocp.2015.08.001 - DOI - PubMed
    1. Ghorbani F, Heidarimoghadam R, Karami M, Fathi K, Minasian V, Bahram ME. The Effect of Six-Week Aerobic Training Program on Cardiovascular Fitness, Body Composition and Mental Health among Female Students. Journal of Research in Health Sciences. 2014;14: 264–267. - PubMed
    1. Pucci GCMF, Rech CR, Fermino RC, Reis RS. Association between physical activity and quality of life in adults. Rev Saude Publica. 2012;46: 1–12. - PubMed