Detecting circRNA in purified spliceosomal P complex
- PMID: 33577981
- PMCID: PMC8352997
- DOI: 10.1016/j.ymeth.2021.02.002
Detecting circRNA in purified spliceosomal P complex
Abstract
Circular RNAs (circRNAs) generated from back-splicing of exons have been found in a wide range of eukaryotic species and exert a variety of biological functions. Unlike canonical splicing, the mechanism of back-splicing has long remained elusive. We recently determined the cryo-EM structure of the yeast spliceosomal E complex assembled on introns, leading us to hypothesize that the same E complex can assemble across an exon forming the exon-definition complex. This complex, when assembled on long exons, goes through the splicing cycle and catalyzes back-splicing to generate circRNAs. Supporting this hypothesis, we purified the yeast post-catalytic spliceosomal P complex (the best complex in the splicing cycle to trap splicing products and intermediates) and detected canonical and back-splicing products as well as splicing intermediates. Here we describe in detail this procedure, which may be applied to other organisms to facilitate research on the biogenesis and regulation of circRNA.
Keywords: Back-splicing; CircRNA; P complex; Spliceosome.
Copyright © 2021 Elsevier Inc. All rights reserved.
Figures




Similar articles
-
A unified mechanism for intron and exon definition and back-splicing.Nature. 2019 Sep;573(7774):375-380. doi: 10.1038/s41586-019-1523-6. Epub 2019 Sep 4. Nature. 2019. PMID: 31485080 Free PMC article.
-
Circular RNA Splicing.Adv Exp Med Biol. 2018;1087:41-52. doi: 10.1007/978-981-13-1426-1_4. Adv Exp Med Biol. 2018. PMID: 30259356 Review.
-
The Biogenesis, Functions, and Challenges of Circular RNAs.Mol Cell. 2018 Aug 2;71(3):428-442. doi: 10.1016/j.molcel.2018.06.034. Epub 2018 Jul 26. Mol Cell. 2018. PMID: 30057200 Review.
-
Insights into the biogenesis and potential functions of exonic circular RNA.Sci Rep. 2019 Feb 14;9(1):2048. doi: 10.1038/s41598-018-37037-0. Sci Rep. 2019. PMID: 30765711 Free PMC article.
-
Structural basis of circularly permuted group II intron self-splicing.Nat Struct Mol Biol. 2025 Jun;32(6):1091-1100. doi: 10.1038/s41594-025-01484-x. Epub 2025 Jan 31. Nat Struct Mol Biol. 2025. PMID: 39890981
Cited by
-
Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition.Genes Dev. 2024 May 21;38(7-8):322-335. doi: 10.1101/gad.351764.124. Genes Dev. 2024. PMID: 38724209 Free PMC article.
-
Structural insights into human exon-defined spliceosome prior to activation.Cell Res. 2024 Jun;34(6):428-439. doi: 10.1038/s41422-024-00949-w. Epub 2024 Apr 24. Cell Res. 2024. PMID: 38658629 Free PMC article.
-
Intron-lariat spliceosomes convert lariats to true circles: implications for intron transposition.bioRxiv [Preprint]. 2024 Mar 27:2024.03.26.586863. doi: 10.1101/2024.03.26.586863. bioRxiv. 2024. Update in: Genes Dev. 2024 May 21;38(7-8):322-335. doi: 10.1101/gad.351764.124. PMID: 38585890 Free PMC article. Updated. Preprint.
-
Circular RNA expression in turkey skeletal muscle satellite cells is significantly altered by thermal challenge.Front Physiol. 2024 Sep 18;15:1476487. doi: 10.3389/fphys.2024.1476487. eCollection 2024. Front Physiol. 2024. PMID: 39359572 Free PMC article.
References
-
- Cocquerelle C, Mascrez B, Hetuin D, Bailleul B, Mis-splicing yields circular RNA molecules, FASEB J 7(1) (1993) 155–60. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases