Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun;18(6):345-362.
doi: 10.1038/s41571-021-00473-5. Epub 2021 Feb 12.

PD-L1 as a biomarker of response to immune-checkpoint inhibitors

Affiliations
Review

PD-L1 as a biomarker of response to immune-checkpoint inhibitors

Deborah Blythe Doroshow et al. Nat Rev Clin Oncol. 2021 Jun.

Abstract

Immune-checkpoint inhibitors targeting PD-1 or PD-L1 have already substantially improved the outcomes of patients with many types of cancer, although only 20-40% of patients derive benefit from these new therapies. PD-L1, quantified using immunohistochemistry assays, is currently the most widely validated, used and accepted biomarker to guide the selection of patients to receive anti-PD-1 or anti-PD-L1 antibodies. However, many challenges remain in the clinical use of these assays, including the necessity of using different companion diagnostic assays for specific agents, high levels of inter-assay variability in terms of both performance and cut-off points, and a lack of prospective comparisons of how PD-L1+ disease diagnosed using each assay relates to clinical outcomes. In this Review, we describe the current role of PD-L1 immunohistochemistry assays used to inform the selection of patients to receive anti-PD-1 or anti-PD-L1 antibodies, we discuss the various technical and clinical challenges associated with these assays, including regulatory issues, and we provide some perspective on how to optimize PD-L1 as a selection biomarker for the future treatment of patients with solid tumours.

PubMed Disclaimer

References

    1. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012). - PubMed - PMC - DOI
    1. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015). - PubMed - PMC - DOI
    1. Blank, C., Gajewski, T. F. & Mackensen, A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol. Immunother. 54, 307–314 (2005). - PubMed - DOI
    1. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002). - PubMed - PMC - DOI
    1. Gong, J., Chehrazi-Raffle, A., Reddi, S. & Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer 6, 8 (2018). - PubMed - PMC - DOI