Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 5:413:125250.
doi: 10.1016/j.jhazmat.2021.125250. Epub 2021 Jan 28.

Thermal treatment of Cs-exchanged chabazite by hot isostatic pressing to support decommissioning of Fukushima Daiichi Nuclear Power Plant

Affiliations

Thermal treatment of Cs-exchanged chabazite by hot isostatic pressing to support decommissioning of Fukushima Daiichi Nuclear Power Plant

Laura J Gardner et al. J Hazard Mater. .

Abstract

Ion exchange materials are used widely for the removal of radionuclides from contaminated water at nuclear licensed sites, during normal operating procedures, decommissioning and in accident clean-up, such as the ongoing recovery operation at the Fukushima Daiichi nuclear power plant. Framework silicate inorganic ion exchange materials, such as chabazite ((Na0.14K1.03Ca1.00Mg0.17)[Al3.36Si8.53O24]•9.7H2O), have shown particular selectivity towards 137Cs uptake, but their safe storage poses a number challenges requiring conditioning into passively safe waste packages of minimal volume. We demonstrate the transformation of Cs-exchanged chabazite into a glass-ceramic wasteform by hot isostatic pressing to produce a durable consolidated monolith. The application of heat and pressure resulted in the collapse of the chabazite framework, forming crystalline Cs-substituted leucite (Cs0.15(3)K0.57(4)Al0.90(4)Si2.24(5)O6) incorporated within a K2O-CaO-MgO-Al2O3-SiO2 glass. The Cs partitioned preferentially into the Cs/K-feldspar which incorporated ~77% of the Cs2O inventory. Analysis of the chemical durability of the glass-ceramic wasteform revealed that the Cs release rates were comparable or lower than those reported for vitrified high level and intermediate level wastes. Overall, hot isostatic pressing was demonstrated to be an effective processing technology for conditioning spent inorganic ion exchange materials by yielding durable and passively safe wasteforms.

Keywords: Characterisation; Chemical durability; Hot isostatic pressing; Ion exchange materials; Nuclear waste management.

PubMed Disclaimer

Publication types

LinkOut - more resources