Toward efficient generation, correction, and properties control of unique drug-like structures
- PMID: 33583075
- DOI: 10.1002/jcc.26494
Toward efficient generation, correction, and properties control of unique drug-like structures
Abstract
Efficient design and screening of the novel molecules is a major challenge in drug and material design. This paper focuses on a multi-stage pipeline, in which several deep neural network models are combined to map discrete molecular representations into continuous vector space to later generate from it new molecular structures with desired properties. Here, the Attention-based Sequence-to-Sequence model is added to "spellcheck" and correct generated structures, while the oversampling in the continuous space allows generating candidate structures with desired distribution for properties and molecular descriptors, even for a small reference datasets. We further use computer simulation to validate the desired properties in the numerical experiment. With the focus on the drug design, such a pipeline allows generating novel structures with a control of Synthetic Accessibility Score and a series of metrics that assess the drug-likeliness. Our code is available at https://github.com/SoftServeInc/novel-molecule-generation.
Keywords: autoencoder; deep neural networks; machine learning; molecular design.
© 2021 Wiley Periodicals LLC.
Similar articles
-
DrugSynthMC: An Atom-Based Generation of Drug-like Molecules with Monte Carlo Search.J Chem Inf Model. 2024 Sep 23;64(18):7097-7107. doi: 10.1021/acs.jcim.4c01451. Epub 2024 Sep 9. J Chem Inf Model. 2024. PMID: 39249497 Free PMC article.
-
Bayesian molecular design with a chemical language model.J Comput Aided Mol Des. 2017 Apr;31(4):379-391. doi: 10.1007/s10822-016-0008-z. Epub 2017 Mar 9. J Comput Aided Mol Des. 2017. PMID: 28281211 Free PMC article.
-
Conditional Molecular Design with Deep Generative Models.J Chem Inf Model. 2019 Jan 28;59(1):43-52. doi: 10.1021/acs.jcim.8b00263. Epub 2018 Jul 27. J Chem Inf Model. 2019. PMID: 30016587
-
The current limits in virtual screening and property prediction.Future Med Chem. 2018 Jul 1;10(13):1623-1635. doi: 10.4155/fmc-2017-0303. Epub 2018 Jun 28. Future Med Chem. 2018. PMID: 29953247 Review.
-
Progress of machine learning in the application of small molecule druggability prediction.Eur J Med Chem. 2025 Mar 5;285:117269. doi: 10.1016/j.ejmech.2025.117269. Epub 2025 Jan 10. Eur J Med Chem. 2025. PMID: 39808972 Review.
Cited by
-
Drug Design: Where We Are and Future Prospects.Molecules. 2021 Nov 22;26(22):7061. doi: 10.3390/molecules26227061. Molecules. 2021. PMID: 34834152 Free PMC article. Review.
-
CSearch: chemical space search via virtual synthesis and global optimization.J Cheminform. 2024 Dec 5;16(1):137. doi: 10.1186/s13321-024-00936-8. J Cheminform. 2024. PMID: 39639340 Free PMC article.
References
REFERENCES
-
- M. Dickson, J. P. Gagnon, Nat. Rev. Drug Discov. 2004, 3, 417. https://doi.org/10.1038/nrd1382.
-
- A. Jahan, M. Y. Ismail, S. M. Sapuan, F. Mustapha, Mater. Des. 2010, 31, 696. https://doi.org/10.1016/j.matdes.2009.08.013.
-
- A. Schuhmacher, O. Gassmann, M. Hinder, J. Transl. Med. 2016, 14, 105. https://doi.org/10.1186/s12967-016-0838-4.
-
- J. C. Babiarz, in FDA Regulatory affairs. A guide for prescription drugs, medical devices, and biologics, 2nd ed. (Eds: D. J. Pisano, D. S. Mantus), Informa Healthcare, New York 2008; Chapter 1, p. 34.
-
- E. Petrova, Innovation and Marketing in the Pharmaceutical Industry; (Eds: M. Ding, et al), International Series in Quantitative Marketing 20, Springer-Verlag, New York 2014. DOI: https://doi.org/10.1007/978-1-4614-7801-0
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical