Using Galaxy to Perform Large-Scale Interactive Data Analyses-An Update
- PMID: 33583104
- DOI: 10.1002/cpz1.31
Using Galaxy to Perform Large-Scale Interactive Data Analyses-An Update
Erratum in
-
Group Correction Statement (Data Availability Statements).Curr Protoc. 2022 Aug;2(8):e552. doi: 10.1002/cpz1.552. Curr Protoc. 2022. PMID: 36005902 Free PMC article. No abstract available.
-
Group Correction Statement (Conflict of Interest Statements).Curr Protoc. 2022 Aug;2(8):e551. doi: 10.1002/cpz1.551. Curr Protoc. 2022. PMID: 36005903 Free PMC article. No abstract available.
Abstract
Modern biology continues to become increasingly computational. Datasets are becoming progressively larger, more complex, and more abundant. The computational savviness necessary to analyze these data creates an ongoing obstacle for experimental biologists. Galaxy (galaxyproject.org) provides access to computational biology tools in a web-based interface. It also provides access to major public biological data repositories, allowing private data to be combined with public datasets. Galaxy is hosted on high-capacity servers worldwide and is accessible for free, with an option to be installed locally. This article demonstrates how to employ Galaxy to perform biologically relevant analyses on publicly available datasets. These protocols use both standard and custom tools, serving as a tutorial and jumping-off point for more intensive and/or more specific analyses using Galaxy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Finding human coding exons with highest SNP density Basic Protocol 2: Calling peaks for ChIP-seq data Basic Protocol 3: Compare datasets using genomic coordinates Basic Protocol 4: Working with multiple alignments Basic Protocol 5: Single cell RNA-seq.
Keywords: Galaxy; computational biology; web application.
© 2021 Wiley Periodicals LLC.
References
Literature Cited
-
- Afgan, E., Baker, D., Batut, B., van-den Beek, M., Bouvier, D., Cech, M., … Blankenberg, D. (2018). The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research, 46(W1), W537-W544. doi: 10.1093/nar/gky379.
-
- Afgan, E., Sloggett, C., Goonasekera, N., Makunin, I., Benson, D., Crowe, M., … Lonie, A. (2015). Genomics Virtual Laboratory: A practical bioinformatics workbench for the cloud. PLoS ONE, 10(10), e0140829. doi: 10.1371/journal.pone.0140829.
-
- Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M., Abecasis, G. R., & Bentley, D. R. … National Eye Institute, N. I. H. (2015). A global reference for human genetic variation. Nature, 526(7571), 68-74. doi: 10.1038/nature15393.
-
- Batut, B., Hiltemann, S., Bagnacani, A., Baker, D., Bhardwaj, V., Blank, C., … Grüning, B. (2018). Community-driven data analysis training for biology. Cell Systems, 6(6), 752-758.e1. doi: 10.1016/j.cels.2018.05.012.
-
- Blankenberg, D., Taylor, J., Nekrutenko, A., & Team, G. (2011). Making whole genome multiple alignments usable for biologists. Bioinformatics (Oxford, England), 27(17), 2426-2428. doi: 10.1093/bioinformatics/btr398.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
