Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 27;13(1):6-65.
doi: 10.4254/wjh.v13.i1.6.

Autophagy in liver diseases

Affiliations
Review

Autophagy in liver diseases

Elias Kouroumalis et al. World J Hepatol. .

Abstract

Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.

Keywords: Autophagy; Fatty liver disease; Fibrosis; Lipophagy; Liver sinusoidal cells; Mitophagy.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors declare that there are no conflicts of interest relevant to this article and no financial support.

Figures

Figure 1
Figure 1
A simplified scheme of the macroautophagy pathways in the liver. Initiation starts with activation of the unc-51-like kinase 1 complex (ULK1, Atg1 in yeast) followed by beclin 1(Atg6 in yeast) and a subsequent cascade of Atg proteins leading to autophagosome formation where LC3 (Atg8 in yeast) is implicated. LC3 is further processed to form initially LC3-I and then LC3-II. Fusion of the autophagosomes with lysosomes form the autolysosome where acid proteases (among which cathepsins are important) and lipases degrade proteins and lipids. Initiation of autophagy is controlled by two metabolic sensors the mammalian target of rapamycin complex 1 (mTORC1) and the AMP-activated protein kinase (AMPK). mTORC1 negatively regulates autophagy inhibiting ULK1. AMPK suppresses mTORC1 activity. The long-term regulation of autophagy is carried out by transcription factor EB (TFEB), the main regulator of lysosomal biogenesis and autophagy. Under nutrient-rich conditions, mTORC1 phosphorylates TFEB and retains TFEB in the cytosol. Orange arrows: Inhibition. Green arrows: Positive regulation. For details see Ref.[21,29,31]. mTORC1: Mammalian target of rapamycin complex 1; TFEB: Transcription factor EB; ULK1: Unc-51-like kinase 1 complex.
Figure 2
Figure 2
Implications of autophagy in critical cellular functions in the liver. For details see text.

Similar articles

Cited by

References

    1. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–662. - PubMed
    1. Levine B, Kroemer G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell. 2019;176:11–42. - PMC - PubMed
    1. Schworer CM, Shiffer KA, Mortimore GE. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem. 1981;256:7652–7658. - PubMed
    1. Mortimore GE, Hutson NJ, Surmacz CA. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci USA. 1983;80:2179–2183. - PMC - PubMed
    1. Ktistakis NT. In praise of M. Anselmier who first used the term "autophagie" in 1859. Autophagy. 2017;13:2015–2017. - PMC - PubMed

LinkOut - more resources