West Syndrome Caused By a Chloride/Proton Exchange-Uncoupling CLCN6 Mutation Related to Autophagic-Lysosomal Dysfunction
- PMID: 33590434
- DOI: 10.1007/s12035-021-02291-3
West Syndrome Caused By a Chloride/Proton Exchange-Uncoupling CLCN6 Mutation Related to Autophagic-Lysosomal Dysfunction
Abstract
Vesicular chloride/proton exchangers of the CLC family are critically involved in the function of the endosomal-lysosomal pathway. Their dysfunction leads to severe disorders including intellectual disability and epilepsy for ClC-4, Dent's disease for ClC-5, and lysosomal storage disease and osteopetrosis for ClC-7. Here, we report a de novo variant p.Glu200Ala (p.E200A; c.599A>C) of the late endosomal ClC-6, encoded by CLCN6, in a patient with West syndrome (WS), severe developmental delay, autism, movement disorder, microcephaly, facial dysmorphism, and visual impairment. Mutation of this conserved glutamate uncouples chloride transport from proton antiport by ClC-6. This affects organellar ion homeostasis and was shown to be deleterious for other CLCs. In this study, we found that upon heterologous expression, the ClC-6 E200A variant caused autophagosome accumulation and impaired the clearance of autophagosomes by blocking autophagosome-lysosome fusion. Our study provides clinical and functional support for an association between CLCN6 variants and WS. Our findings also provide novel insights into the molecular mechanisms underlying the pathogenesis of WS, suggesting an involvement of autophagic-lysosomal dysfunction.
Keywords: Autophagy; CLCN6; Chloride/proton exchanger; Lysosome; West syndrome.
Similar articles
-
A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl-/H+-Exchanger, Causes Early-Onset Neurodegeneration.Am J Hum Genet. 2020 Dec 3;107(6):1062-1077. doi: 10.1016/j.ajhg.2020.11.004. Epub 2020 Nov 19. Am J Hum Genet. 2020. PMID: 33217309 Free PMC article.
-
Mutations in CLCN6 as a Novel Genetic Cause of Neuronal Ceroid Lipofuscinosis in Patients and a Murine Model.Ann Neurol. 2024 Sep;96(3):608-624. doi: 10.1002/ana.27002. Epub 2024 Jun 15. Ann Neurol. 2024. PMID: 38877824
-
Impaired Autophagic Clearance with a Gain-of-Function Variant of the Lysosomal Cl-/H+ Exchanger ClC-7.Biomolecules. 2023 Dec 15;13(12):1799. doi: 10.3390/biom13121799. Biomolecules. 2023. PMID: 38136669 Free PMC article.
-
Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters.Front Cell Dev Biol. 2021 Feb 23;9:639231. doi: 10.3389/fcell.2021.639231. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 33708769 Free PMC article. Review.
-
Cell biology and physiology of CLC chloride channels and transporters.Compr Physiol. 2012 Jul;2(3):1701-44. doi: 10.1002/cphy.c110038. Compr Physiol. 2012. PMID: 23723021 Review.
Cited by
-
Vesicular CLC chloride/proton exchangers in health and diseases.Front Pharmacol. 2023 Nov 7;14:1295068. doi: 10.3389/fphar.2023.1295068. eCollection 2023. Front Pharmacol. 2023. PMID: 38027030 Free PMC article. Review.
-
ClC-3 regulates the excitability of nociceptive neurons and is involved in inflammatory processes within the spinal sensory pathway.Front Cell Neurosci. 2022 Aug 24;16:920075. doi: 10.3389/fncel.2022.920075. eCollection 2022. Front Cell Neurosci. 2022. PMID: 37124866 Free PMC article.
-
Unique variants in CLCN3, encoding an endosomal anion/proton exchanger, underlie a spectrum of neurodevelopmental disorders.Am J Hum Genet. 2021 Aug 5;108(8):1450-1465. doi: 10.1016/j.ajhg.2021.06.003. Epub 2021 Jun 28. Am J Hum Genet. 2021. PMID: 34186028 Free PMC article.
-
Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies.Biomedicines. 2023 Jan 20;11(2):289. doi: 10.3390/biomedicines11020289. Biomedicines. 2023. PMID: 36830826 Free PMC article.
-
Molecular basis of ClC-6 function and its impairment in human disease.Sci Adv. 2023 Oct 13;9(41):eadg4479. doi: 10.1126/sciadv.adg4479. Epub 2023 Oct 13. Sci Adv. 2023. PMID: 37831762 Free PMC article.
References
-
- Wheless JW, Gibson PA, Rosbeck KL, Hardin M, O’Dell C, Whittemore V, Pellock JM (2012) Infantile spasms (West syndrome): update and resources for pediatricians and providers to share with parents. BMC Pediatr 12:108. https://doi.org/10.1186/1471-2431-12-108 - DOI - PubMed - PMC
-
- McTague A, Howell KB, Cross JH, Kurian MA, Scheffer IE (2016) The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 15:304–316. https://doi.org/10.1016/S1474-4422(15)00250-1 - DOI - PubMed
-
- Shbarou R, Mikati MA (2016) The expanding clinical spectrum of genetic pediatric epileptic encephalopathies. Semin Pediatr Neurol 23:134–142. https://doi.org/10.1016/j.spen.2016.06.002 - DOI - PubMed
-
- Boutry-Kryza N, Labalme A, Ville D, de Bellescize J, Touraine R, Prieur F, Dimassi S, Poulat AL et al (2015) Molecular characterization of a cohort of 73 patients with infantile spasms syndrome. Eur J Med Genet 58:51–58. https://doi.org/10.1016/j.ejmg.2014.11.007 - DOI - PubMed
-
- Holland KD, Hallinan BE (2010) What causes epileptic encephalopathy in infancy?: the answer may lie in our genes. Neurology 75:1132–1133. https://doi.org/10.1212/WNL.0b013e3181f6bc97 - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources