Transcriptional changes revealed genes and pathways involved in the deficient testis caused by the inhibition of alkaline ceramidase (Dacer) in Drosophila melanogaster
- PMID: 33590535
- DOI: 10.1002/arch.21765
Transcriptional changes revealed genes and pathways involved in the deficient testis caused by the inhibition of alkaline ceramidase (Dacer) in Drosophila melanogaster
Abstract
Sphingolipids are ubiquitous structural components of eukaryotic cell membranes which are vital for maintaining the integrity of cells. Alkaline ceramidase is a key enzyme in sphingolipid biosynthesis pathway; however, little is known about the role of the enzyme in the male reproductive system of Drosophila melanogaster. To investigate the impact of alkaline ceramidase (Dacer) on male Drosophila, we got Dacer deficiency mutants (MUs) and found they displayed apparent defects in the testis's phenotype. To profile the molecular changes associated with this abnormal phenotype, we performed de novo transcriptome analyses of the MU and wildtype (WT) testes; and revealed 1239 upregulated genes and 1102 downregulated genes. Then, six upregulated DEGs (papilin [Ppn], croquemort [Crq], terribly reduced optic lobes [Trol], Laminin, Wunen-2, collagen type IV alpha 1 [Cg25C]) and three downregulated DEGs (mucin related 18B [Mur18B], rhomboid-7 [Rho-7], CG3168) were confirmed through quantitative real-time polymerase chain reaction in WT and MU samples. The differentially expressed genes were mainly associated with catalytic activity, oxidoreductase activity and transmembrane transporter activity, which significantly contributed to extracellular matrix-receptor interaction, fatty acids biosynthesis as well as glycine, serine, and threonine metabolism. The results highlight the importance of Dacer in the reproductive system of D. melanogaster and provide valuable resources to dig out the specific biological functions of Dacer in insect reproduction.
Keywords: ECM-receptor interaction pathway; laminin; reproductive organ malformation; sequencing; sphingolipid.
© 2021 Wiley Periodicals LLC.
Similar articles
-
Alkaline Ceramidase Mediates the Oxidative Stress Response in Drosophila melanogaster Through Sphingosine.J Insect Sci. 2019 May 1;19(3):13. doi: 10.1093/jisesa/iez042. J Insect Sci. 2019. PMID: 31115476 Free PMC article.
-
Role of Drosophila alkaline ceramidase (Dacer) in Drosophila development and longevity.Cell Mol Life Sci. 2010 May;67(9):1477-90. doi: 10.1007/s00018-010-0260-7. Epub 2010 Jan 30. Cell Mol Life Sci. 2010. PMID: 20112046 Free PMC article.
-
Alkaline ceramidase family: The first two decades.Cell Signal. 2021 Feb;78:109860. doi: 10.1016/j.cellsig.2020.109860. Epub 2020 Dec 1. Cell Signal. 2021. PMID: 33271224 Review.
-
Ceramidases, roles in sphingolipid metabolism and in health and disease.Adv Biol Regul. 2017 Jan;63:122-131. doi: 10.1016/j.jbior.2016.10.002. Epub 2016 Oct 11. Adv Biol Regul. 2017. PMID: 27771292 Free PMC article. Review.
-
Analysis of Drosophila melanogaster testis transcriptome.BMC Genomics. 2018 Sep 24;19(1):697. doi: 10.1186/s12864-018-5085-z. BMC Genomics. 2018. PMID: 30249207 Free PMC article.
Cited by
-
The genetic basis and adult reproductive consequences of developmental thermal plasticity.J Anim Ecol. 2022 Jun;91(6):1119-1134. doi: 10.1111/1365-2656.13664. Epub 2022 Feb 8. J Anim Ecol. 2022. PMID: 35060127 Free PMC article.
References
REFERENCES
-
- Alayoubi, A. M., Wang, J. C. M., Au, B. C. Y., Carpentier, S., Garcia, V., Dworski, S., El-Ghamrasni, S., Kirouac, K. N., Exertier, M. J., Xiong, Z. J., Privé, G. G., Simonaro, C. M., Casas, J., Fabrias, G., Schuchman, E. H., Turner, P. V., Hakem, R., Levade, T., & Medin, J. A. (2013). Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Molecular Medicine, 5(6), 827-842. https://doi.org/10.1002/emmm.201202301
-
- Bellen, H. J., Levis, R. W., Liao, G., He, Y., Carlson, J. W., Tsang, G., Evans-Holm, M., Hiesinger, P. R., Schulze, K. L., Rubin, G. M., Hoskins, R. A., & Spradling, A. C. (2004). The BDGP gene disruption project: Single transposon insertions associated with 40% of Drosophila genes. Genetics, 167(2), 761-781. https://doi.org/10.1534/genetics.104.026427
-
- Butler, A., He, X., Gordon, R. E., Wu, H. S., Gatt, S., & Schuchman, E. H. (2002). Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. American Journal of Pathology, 161(3), 1061-1075. https://doi.org/10.1016/S0002-9440(10)64267-8
-
- Choi, S. R., Lim, J. H., Kim, M. Y., Kim, E. N., Kim, Y., Choi, B. S., Kim, Y. S., Kim, H. W., Lim, K. M., Kim, M. J., & Park, C. W. (2018). Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metabolism: Clinical and Experimental, 85, 348-360. https://doi.org/10.1016/j.metabol.2018.02.004
-
- Díaz de la Loza, M. C., Díaz-Torres, A., Zurita, F., Rosales-Nieves, A. E., Moeendarbary, E., Franze, K., Martín-Bermudo, M. D., & González-Reyes, A. (2017). Laminin levels regulate tissue migration and anterior-posterior polarity during egg morphogenesis in Drosophila. Cell Reports, 20(1), 211-223. https://doi.org/10.1016/j.celrep.2017.06.031
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials