Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities
- PMID: 33590753
- PMCID: PMC7961706
- DOI: 10.1021/acsinfecdis.0c00724
Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities
Abstract
Protein and phosphoinositide kinases have been successfully exploited as drug targets in various disease areas, principally in oncology. In malaria, several protein kinases are under investigation as potential drug targets, and an inhibitor of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4KIIIβ) is currently in phase 2 clinical studies. In this Perspective, we review the potential of kinases as drug targets for the treatment of malaria. Kinases are known to be readily druggable, and many are essential for parasite survival. A key challenge in the design of Plasmodium kinase inhibitors is obtaining selectivity over the corresponding human orthologue(s) and other human kinases due to the highly conserved nature of the shared ATP binding site. Notwithstanding this, there are some notable differences between the Plasmodium and human kinome that may be exploitable. There is also the potential for designed polypharmacology, where several Plasmodium kinases are inhibited by the same drug. Prior to starting the drug discovery process, it is important to carefully assess potential kinase targets to ensure that the inhibition of the desired kinase will kill the parasites in the required life-cycle stages with a sufficiently fast rate of kill. Here, we highlight key target attributes and experimental approaches to consider and summarize the progress that has been made targeting Plasmodium PI4KIIIβ, cGMP-dependent protein kinase, and cyclin-dependent-like kinase 3.
Keywords: Plasmodium; drug discovery; lipid kinase; malaria; protein kinase; target validation.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- WHO (2019) World Malaria Report 2019, WHO, Geneva.
-
- Alvar J.; Alves F.; Bucheton B.; Burrows L.; Buscher P.; Carrillo E.; Felger I.; Hubner M. P.; Moreno J.; Pinazo M. J.; Ribeiro I.; Sosa-Estani S.; Specht S.; Tarral A.; Wourgaft N. S.; Bilbe G. (2020) Implications of asymptomatic infection for the natural history of selected parasitic tropical diseases. Semin. Immunopathol. 42, 231–246. 10.1007/s00281-020-00796-y. - DOI - PMC - PubMed
-
- De Rycker M.; Horn D.; Aldridge B.; Amewu R. K.; Barry C. E. 3rd; Buckner F. S.; Cook S.; Ferguson M. A. J.; Gobeau N.; Herrmann J.; Herrling P.; Hope W.; Keiser J.; Lafuente-Monasterio M. J.; Leeson P. D.; Leroy D.; Manjunatha U. H.; McCarthy J.; Miles T. J.; Mizrahi V.; Moshynets O.; Niles J.; Overington J. P.; Pottage J.; Rao S. P. S.; Read K. D.; Ribeiro I.; Silver L. L.; Southern J.; Spangenberg T.; Sundar S.; Taylor C.; Van Voorhis W.; White N. J.; Wyllie S.; Wyatt P. G.; Gilbert I. H. (2020) Setting Our Sights on Infectious Diseases. ACS Infect. Dis. 6, 3–13. 10.1021/acsinfecdis.9b00371. - DOI - PMC - PubMed
-
- Uwimana A.; Legrand E.; Stokes B. H.; Ndikumana J. M.; Warsame M.; Umulisa N.; Ngamije D.; Munyaneza T.; Mazarati J. B.; Munguti K.; Campagne P.; Criscuolo A.; Ariey F.; Murindahabi M.; Ringwald P.; Fidock D. A.; Mbituyumuremyi A.; Menard D. (2020) Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med. 26, 1602.10.1038/s41591-020-1005-2. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
