Comparison of diagnostic performance between convolutional neural networks and human endoscopists for diagnosis of colorectal polyp: A systematic review and meta-analysis
- PMID: 33592048
- PMCID: PMC7886136
- DOI: 10.1371/journal.pone.0246892
Comparison of diagnostic performance between convolutional neural networks and human endoscopists for diagnosis of colorectal polyp: A systematic review and meta-analysis
Abstract
Prospective randomized trials and observational studies have revealed that early detection, classification, and removal of neoplastic colorectal polyp (CP) significantly improve the prevention of colorectal cancer (CRC). The current effectiveness of the diagnostic performance of colonoscopy remains unsatisfactory with unstable accuracy. The convolutional neural networks (CNN) system based on artificial intelligence (AI) technology has demonstrated its potential to help endoscopists in increasing diagnostic accuracy. Nonetheless, several limitations of the CNN system and controversies exist on whether it provides a better diagnostic performance compared to human endoscopists. Therefore, this study sought to address this issue. Online databases (PubMed, Web of Science, Cochrane Library, and EMBASE) were used to search for studies conducted up to April 2020. Besides, the quality assessment of diagnostic accuracy scale-2 (QUADAS-2) was used to evaluate the quality of the enrolled studies. Moreover, publication bias was determined using the Deeks' funnel plot. In total, 13 studies were enrolled for this meta-analysis (ranged between 2016 and 2020). Consequently, the CNN system had a satisfactory diagnostic performance in the field of CP detection (sensitivity: 0.848 [95% CI: 0.692-0.932]; specificity: 0.965 [95% CI: 0.946-0.977]; and AUC: 0.98 [95% CI: 0.96-0.99]) and CP classification (sensitivity: 0.943 [95% CI: 0.927-0.955]; specificity: 0.894 [95% CI: 0.631-0.977]; and AUC: 0.95 [95% CI: 0.93-0.97]). In comparison with human endoscopists, the CNN system was comparable to the expert but significantly better than the non-expert in the field of CP classification (CNN vs. expert: RDOR: 1.03, P = 0.9654; non-expert vs. expert: RDOR: 0.29, P = 0.0559; non-expert vs. CNN: 0.18, P = 0.0342). Therefore, the CNN system exhibited a satisfactory diagnostic performance for CP and could be used as a potential clinical diagnostic tool during colonoscopy.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Kuntz KM, Lansdorp-Vogelaar I, Rutter CM, Knudsen AB, van Ballegooijen M, Savarino JE, et al. A systematic comparison of microsimulation models of colorectal cancer: the role of assumptions about adenoma progression. Med Decis Making. 2011;31(4):530–9. 10.1177/0272989X11408730 . - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
