Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Feb 16;21(1):167.
doi: 10.1186/s12885-021-07889-3.

Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review & meta-analysis

Affiliations
Meta-Analysis

Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review & meta-analysis

Muhammad Khan et al. BMC Cancer. .

Abstract

Background: Radiotherapy is the mainstay of brain metastasis (BM) management. Radiation necrosis (RN) is a serious complication of radiotherapy. Bevacizumab (BV), an anti-vascular endothelial growth factor monoclonal antibody, has been increasingly used for RN treatment. We systematically reviewed the medical literature for studies reporting the efficacy and safety of bevacizumab for treatment of RN in BM patients.

Materials and methods: PubMed, Medline, EMBASE, and Cochrane library were searched with various search keywords such as "bevacizumab" OR "anti-VEGF monoclonal antibody" AND "radiation necrosis" OR "radiation-induced brain necrosis" OR "RN" OR "RBN" AND "Brain metastases" OR "BM" until 1st Aug 2020. Studies reporting the efficacy and safety of BV treatment for BM patients with RN were retrieved. Study selection and data extraction were carried out by independent investigators. Open Meta Analyst software was used as a random effects model for meta-analysis to obtain mean reduction rates.

Results: Two prospective, seven retrospective, and three case report studies involving 89 patients with RN treated with BV were included in this systematic review and meta-analysis. In total, 83 (93%) patients had a recorded radiographic response to BV therapy, and six (6.7%) had experienced progressive disease. Seven studies (n = 73) reported mean volume reductions on gadolinium-enhanced T1 (mean: 47.03%, +/- 24.4) and T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI images (mean: 61.9%, +/- 23.3). Pooling together the T1 and T2 MRI reduction rates by random effects model revealed a mean of 48.58 (95% CI: 38.32-58.85) for T1 reduction rate and 62.017 (95% CI: 52.235-71.799) for T2W imaging studies. Eighty-five patients presented with neurological symptoms. After BV treatment, nine (10%) had stable symptoms, 39 (48%) had improved, and 34 (40%) patients had complete resolution of their symptoms. Individual patient data was available for 54 patients. Dexamethasone discontinuation or reduction in dosage was observed in 30 (97%) of 31 patients who had recorded dosage before and after BV treatment. Side effects were mild.

Conclusions: Bevacizumab presents a promising treatment strategy for patients with RN and brain metastatic disease. Radiographic response and clinical improvement was observed without any serious adverse events. Further class I evidence would be required to establish a bevacizumab recommendation in this group of patients.

Keywords: Adverse events; Bevacizumab (BV); Dexamethasone (Dex); MRI imaging; Radiation necrosis (RN).

PubMed Disclaimer

Conflict of interest statement

None

Figures

Fig. 1
Fig. 1
PRISMA flow diagram of research strategy and study selection
Fig. 2
Fig. 2
Forest plot of meta-analysis of mean reduction rate on T1-contrast enhanced MRI (a) and T2W FLAIR MRI (b) after bevacizumab (BV) treatment for radiation necrosis (RN) in patients with brain metastases
Fig. 3
Fig. 3
Sensitivity analysis of studies that used comparatively similar methods for estimation of reduction rates. Results are shown as forest plot of meta-analysis of mean reduction rate on T1-contrast enhanced MRI (a) and T2W FLAIR MRI (b)

Similar articles

Cited by

References

    1. Langer CJ, Mehta MP. Current management of brain metastases, with a focus on systemic options. J Clin Oncol. 2005;23(25):6207–6219. doi: 10.1200/jco.2005.03.145. - DOI - PubMed
    1. Tabouret E, Chinot O, Metellus P, Tallet A, Viens P, Gonçalves A. Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 2012;32(11):4655–4662. - PubMed
    1. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22(14):2865–2872. doi: 10.1200/jco.2004.12.149. - DOI - PubMed
    1. Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK. The biology of brain metastases-translation to new therapies. Nat Rev Clin Oncol. 2011;8(6):344–356. doi: 10.1038/nrclinonc.2011.58. - DOI - PMC - PubMed
    1. Nieder C, Spanne O, Mehta MP, Grosu AL, Geinitz H. Presentation, patterns of care, and survival in patients with brain metastases: what has changed in the last 20 years? Cancer. 2011;117(11):2505–2512. doi: 10.1002/cncr.25707. - DOI - PubMed

MeSH terms

Substances