A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
- PMID: 33594071
- PMCID: PMC7887334
- DOI: 10.1038/s41467-021-21311-3
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
Abstract
Pelvic radiograph (PXR) is essential for detecting proximal femur and pelvis injuries in trauma patients, which is also the key component for trauma survey. None of the currently available algorithms can accurately detect all kinds of trauma-related radiographic findings on PXRs. Here, we show a universal algorithm can detect most types of trauma-related radiographic findings on PXRs. We develop a multiscale deep learning algorithm called PelviXNet trained with 5204 PXRs with weakly supervised point annotation. PelviXNet yields an area under the receiver operating characteristic curve (AUROC) of 0.973 (95% CI, 0.960-0.983) and an area under the precision-recall curve (AUPRC) of 0.963 (95% CI, 0.948-0.974) in the clinical population test set of 1888 PXRs. The accuracy, sensitivity, and specificity at the cutoff value are 0.924 (95% CI, 0.912-0.936), 0.908 (95% CI, 0.885-0.908), and 0.932 (95% CI, 0.919-0.946), respectively. PelviXNet demonstrates comparable performance with radiologists and orthopedics in detecting pelvic and hip fractures.
Conflict of interest statement
The authors declare no competing interests.
Figures





Similar articles
-
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs.Eur Radiol. 2019 Oct;29(10):5469-5477. doi: 10.1007/s00330-019-06167-y. Epub 2019 Apr 1. Eur Radiol. 2019. PMID: 30937588 Free PMC article.
-
Deep Learning Assistance Closes the Accuracy Gap in Fracture Detection Across Clinician Types.Clin Orthop Relat Res. 2023 Mar 1;481(3):580-588. doi: 10.1097/CORR.0000000000002385. Epub 2022 Sep 9. Clin Orthop Relat Res. 2023. PMID: 36083847 Free PMC article.
-
An automated hip fracture detection, classification system on pelvic radiographs and comparison with 35 clinicians.Sci Rep. 2025 May 8;15(1):16001. doi: 10.1038/s41598-025-98852-w. Sci Rep. 2025. PMID: 40341645 Free PMC article.
-
Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection.Eur J Radiol. 2020 Sep;130:109139. doi: 10.1016/j.ejrad.2020.109139. Epub 2020 Jun 21. Eur J Radiol. 2020. PMID: 32623269 Free PMC article.
-
The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs.Eur J Radiol. 2020 Sep;130:109188. doi: 10.1016/j.ejrad.2020.109188. Epub 2020 Jul 23. Eur J Radiol. 2020. PMID: 32721827
Cited by
-
Evaluation of ensemble strategy on the development of multiple view ankle fracture detection algorithm.Br J Radiol. 2023 Apr 1;96(1145):20220924. doi: 10.1259/bjr.20220924. Epub 2023 Mar 17. Br J Radiol. 2023. PMID: 36930721 Free PMC article.
-
The Feasibility and Performance of Total Hip Replacement Prediction Deep Learning Algorithm with Real World Data.Bioengineering (Basel). 2023 Apr 9;10(4):458. doi: 10.3390/bioengineering10040458. Bioengineering (Basel). 2023. PMID: 37106645 Free PMC article.
-
Artificial Intelligence in the Diagnosis and Prognostication of the Musculoskeletal Patient.HSS J. 2025 May 28:15563316251339660. doi: 10.1177/15563316251339660. Online ahead of print. HSS J. 2025. PMID: 40454292 Free PMC article. Review.
-
Swarm learning network for privacy-preserving and collaborative deep learning assisted diagnosis of fracture: a multi-center diagnostic study.Front Med (Lausanne). 2025 Jul 3;12:1534117. doi: 10.3389/fmed.2025.1534117. eCollection 2025. Front Med (Lausanne). 2025. PMID: 40678137 Free PMC article.
-
An Extra Set of Intelligent Eyes: Application of Artificial Intelligence in Imaging of Abdominopelvic Pathologies in Emergency Radiology.Diagnostics (Basel). 2022 May 30;12(6):1351. doi: 10.3390/diagnostics12061351. Diagnostics (Basel). 2022. PMID: 35741161 Free PMC article. Review.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical