Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 2;22(5):bbab013.
doi: 10.1093/bib/bbab013.

m6A regulator-mediated methylation modification patterns and characteristics of immunity and stemness in low-grade glioma

Affiliations

m6A regulator-mediated methylation modification patterns and characteristics of immunity and stemness in low-grade glioma

Jianyang Du et al. Brief Bioinform. .

Abstract

m6A RNA methylation is an emerging epigenetic modification, and its potential role in immunity and stemness remains unknown. Based on 17 widely recognized m6A regulators, the m6A modification patterns and corresponding characteristics of immune infiltration and stemness of 1152 low-grade glioma samples were comprehensively analyzed. Machine-learning strategies for constructing m6AScores were trained to quantify the m6A modification patterns of individual samples. Here, we reveal a significant correlation between the multi-omics data of regulators and clinicopathological parameters. We identified two distinct m6A modification patterns (an immune-activated differentiation pattern and an immune-desert dedifferentiation pattern) and four regulatory patterns of m6A methylation on immunity and stemness. We show that the m6AScores can predict the molecular subtype of low-grade glioma, the abundance of immune infiltration, the enrichment of signaling pathways, gene variation and prognosis. The concentration of high immunogenicity and clinical benefits in the low-m6AScore group confirmed the sensitive response to radio-chemotherapy and immunotherapy in patients with high-m6AScore. The results of the pan-cancer analyses illustrate the significant correlation between m6AScore and clinical outcome, the burden of neoepitope, immune infiltration and stemness. The assessment of individual tumor m6A modification patterns will guide us in improving treatment strategies and developing objective diagnostic tools.

Keywords: immunotherapy; m6A; machine learning; pan-cancer; stemness; tumor immune microenvironment.

PubMed Disclaimer

Publication types

MeSH terms