Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul;473(7):1137-1149.
doi: 10.1007/s00424-021-02530-5. Epub 2021 Feb 17.

The updated view on induced pluripotent stem cells for cardiovascular precision medicine

Affiliations
Review

The updated view on induced pluripotent stem cells for cardiovascular precision medicine

Yong Wang et al. Pflugers Arch. 2021 Jul.

Abstract

Cardiovascular diseases have consistently been one of the leading causes of mortality, despite investigations by many scientists and clinicians. Animal models are versatile platforms to illustrate various mechanisms of different diseases, but are lacking in accurately portraying cardiovascular disease phenotypes. The advent of human pluripotent stem cells (PSCs) has led to much development in the construction of cardiovascular disease models. In this review, we provide a brief overview of the history and utilization of PSCs for cardiovascular precision medicine, including disease modeling, drug screening, and gene editing, and elaborate on the current updated research status of patient-specific induced pluripotent stem cell (iPSC)-based disease models for cardiac channelopathies, cardiomyopathies, and other cardiovascular diseases. Furthermore, we highlight the development of novel human iPSC-derived engineered heart tissues for cardiovascular disease modeling. Finally, we put forward our own views on the existing advantages and difficulties for moving forward in this field.

Keywords: Cardiovascular disease; Disease model; Pluripotent stem cell; Precision medicine.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Acimovic I, Refaat M, Moreau A, Salykin A, Reiken S, Sleiman Y, Souidi M, Přibyl J, Kajava A, Richard S, Lu J, Chevalier P, Skládal P, Dvořak P, Rotrekl V, Marks A, Scheinman M, Lacampagne A, Meli A (2018) Post-translational modifications and diastolic calcium leak associated to the novel RyR2-D3638A mutation lead to CPVT in patient-specific hiPSC-derived cardiomyocytes. Journal of Clinical Medicine 7:423. https://doi.org/10.3390/jcm7110423 - DOI - PMC
    1. Alfar EA, El-Armouche A, Guan K (2018) MicroRNAs in cardiomyocyte differentiation and maturation. Cardiovasc Res 114:779–781. https://doi.org/10.1093/cvr/cvy065 - DOI - PubMed
    1. Bellin M, Greber B (2015) Human iPS cell models of Jervell and Lange-Nielsen syndrome. Rare Diseases 3:e1012978. https://doi.org/10.1080/21675511.2015.1012978 - DOI - PubMed - PMC
    1. Ben Jehuda R, Eisen B, Shemer Y, Mekies LN, Szantai A, Reiter I, Cui H, Guan K, Haron-Khun S, Freimark D, Sperling SR, Gherghiceanu M, Arad M, Binah O (2018) CRISPR correction of the PRKAG2 gene mutation in the patient's induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities. Heart Rhythm 15:267–276. https://doi.org/10.1016/j.hrthm.2017.09.024 - DOI - PubMed
    1. Carvajal-Vergara X, Sevilla A, D'Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, Ge Y, Cohen N, Edelmann LJ, Chang B, Waghray A, Su J, Pardo S, Lichtenbelt KD, Tartaglia M, Gelb BD, Lemischka IR (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808–812. https://doi.org/10.1038/nature09005 - DOI - PubMed - PMC

Publication types

LinkOut - more resources