Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Feb 17;17(2):e1009225.
doi: 10.1371/journal.ppat.1009225. eCollection 2021 Feb.

SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development

Affiliations
Review

SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development

Nicholas Murgolo et al. PLoS Pathog. .

Abstract

Since the initial report of the novel Coronavirus Disease 2019 (COVID-19) emanating from Wuhan, China, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally. While the effects of SARS-CoV-2 infection are not completely understood, there appears to be a wide spectrum of disease ranging from mild symptoms to severe respiratory distress, hospitalization, and mortality. There are no Food and Drug Administration (FDA)-approved treatments for COVID-19 aside from remdesivir; early efforts to identify efficacious therapeutics for COVID-19 have mainly focused on drug repurposing screens to identify compounds with antiviral activity against SARS-CoV-2 in cellular infection systems. These screens have yielded intriguing hits, but the use of nonhuman immortalized cell lines derived from non-pulmonary or gastrointestinal origins poses any number of questions in predicting the physiological and pathological relevance of these potential interventions. While our knowledge of this novel virus continues to evolve, our current understanding of the key molecular and cellular interactions involved in SARS-CoV-2 infection is discussed in order to provide a framework for developing the most appropriate in vitro toolbox to support current and future drug discovery efforts.

PubMed Disclaimer

Conflict of interest statement

All authors are employees of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA and may own stock or hold stock options in Merck & Co., Inc., Kenilworth, NJ, USA.

Figures

Fig 1
Fig 1. SARS-CoV-2 entry mechanisms.
Viral coat spike protein binds to ACE2, and in some cases, perhaps NRP1, on responsive cells. Virus spike protein is either processed by TMPRSS2 and other serine proteases facilitating cell surface entry or endocytosed into endosomes where spike is processed by CTSL in the lysosome. Viral RNA released from TMPRSS2-mediated entry or endosome release is replicated as partial and complete genome copies and translated in the ER to form new SARS-CoV-2 virions. Processing of spike protein by furin occurs prior to release of new viruses into the extracellular environment. ACE2, angiotensin converting enzyme 2; CTSL, cathepsin L; ER, endoplasmic reticulum; NRP1, Neuropilin 1; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.
Fig 2
Fig 2. Nucleotide phosphorylation.
The 24-hour intracellular NTP concentration of adenosine antiviral drug leads (MK-0608, Gilead Sciences remdesivir prodrug GS-5734, and Gilead Sciences remdesivir parent nucleoside GS-441524) after incubation at 1 μM illustrates the apparent deficiency of Vero E6 cells with regard to conversion to the active triphosphate form as compared to other cell lines studied. NTP, nucleoside triphosphate.

Similar articles

Cited by

References

    1. Weiss SR. J Exp Med. Forty years with coronaviruses, 2020;217 10.1084/jem.20200537 - DOI - PMC - PubMed
    1. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res. 2018;100:163–88. 10.1016/bs.aivir.2018.01.001 - DOI - PMC - PubMed
    1. Graham RL, Baric RS. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol. 2010;84:3134–46. 10.1128/JVI.01394-09 - DOI - PMC - PubMed
    1. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–9. 10.1126/science.1118391 - DOI - PubMed
    1. Kamps BS, Hoffmann C. Flying Publisher.

Publication types

LinkOut - more resources