Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets
- PMID: 33597220
- PMCID: PMC8011693
- DOI: 10.1126/science.abf4896
Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets
Abstract
Containment of the COVID-19 pandemic requires reducing viral transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is initiated by membrane fusion between the viral and host cell membranes, which is mediated by the viral spike protein. We have designed lipopeptide fusion inhibitors that block this critical first step of infection and, on the basis of in vitro efficacy and in vivo biodistribution, selected a dimeric form for evaluation in an animal model. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour cohousing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and thus may readily translate into safe and effective intranasal prophylaxis to reduce transmission of SARS-CoV-2.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Figures




Update of
-
Intranasal fusion inhibitory lipopeptide prevents direct contact SARS-CoV-2 transmission in ferrets.bioRxiv [Preprint]. 2020 Nov 5:2020.11.04.361154. doi: 10.1101/2020.11.04.361154. bioRxiv. 2020. Update in: Science. 2021 Mar 26;371(6536):1379-1382. doi: 10.1126/science.abf4896. PMID: 33173865 Free PMC article. Updated. Preprint.
Similar articles
-
Inhibition of Coronavirus Entry In Vitro and Ex Vivo by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain.mBio. 2020 Oct 20;11(5):e01935-20. doi: 10.1128/mBio.01935-20. mBio. 2020. PMID: 33082259 Free PMC article.
-
Intranasal fusion inhibitory lipopeptide prevents direct contact SARS-CoV-2 transmission in ferrets.bioRxiv [Preprint]. 2020 Nov 5:2020.11.04.361154. doi: 10.1101/2020.11.04.361154. bioRxiv. 2020. Update in: Science. 2021 Mar 26;371(6536):1379-1382. doi: 10.1126/science.abf4896. PMID: 33173865 Free PMC article. Updated. Preprint.
-
Enhancing the solubility of SARS-CoV-2 inhibitors to increase future prospects for clinical development.J Virol. 2025 Mar 18;99(3):e0215924. doi: 10.1128/jvi.02159-24. Epub 2025 Feb 4. J Virol. 2025. PMID: 39902960 Free PMC article.
-
Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: A systematic review of in vitro and in vivo studies.J Cell Physiol. 2021 Apr;236(4):2364-2392. doi: 10.1002/jcp.30032. Epub 2020 Sep 9. J Cell Physiol. 2021. PMID: 32901936
-
Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19.J Med Virol. 2021 Sep;93(9):5260-5276. doi: 10.1002/jmv.27019. Epub 2021 May 3. J Med Virol. 2021. PMID: 33851732 Free PMC article. Review.
Cited by
-
Lipid and Lipidation in Membrane Fusion.J Membr Biol. 2022 Dec;255(6):691-703. doi: 10.1007/s00232-022-00267-5. Epub 2022 Sep 14. J Membr Biol. 2022. PMID: 36102950 Free PMC article. Review.
-
Tailored lipopeptide surfactants as potentially effective drugs to treat SARS-CoV-2 infection.Med Hypotheses. 2022 Oct;167:110948. doi: 10.1016/j.mehy.2022.110948. Epub 2022 Sep 17. Med Hypotheses. 2022. PMID: 36157252 Free PMC article.
-
Structurally Modified Bioactive Peptide Inhibits SARS-CoV-2 Lentiviral Particles Expression.Pharmaceutics. 2022 Sep 26;14(10):2045. doi: 10.3390/pharmaceutics14102045. Pharmaceutics. 2022. PMID: 36297481 Free PMC article.
-
Recombinant Protein Micelles to Block Transduction by SARS-CoV-2 Pseudovirus.ACS Nano. 2022 Oct 25;16(10):17466-17477. doi: 10.1021/acsnano.2c09015. Epub 2022 Oct 3. ACS Nano. 2022. PMID: 36191145 Free PMC article.
-
(How) should researchers publicize their research papers before peer review?Scientometrics. 2023;128(3):2019-2023. doi: 10.1007/s11192-023-04646-0. Epub 2023 Feb 3. Scientometrics. 2023. PMID: 36777380 Free PMC article.
References
-
- Hoffmann M., Kleine-Weber H., Schroeder S., Krger N., Herrler T., Erichsen S., Schiergens T. S., Herrler G., Wu N.-H., Nitsche A., Mller M. A., Drosten C., Phlmann S., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8. (2020). 10.1016/j.cell.2020.02.052 - DOI - PMC - PubMed
-
- Outlaw V. K., Bovier F. T., Mears M. C., Cajimat M. N., Zhu Y., Lin M. J., Addetia A., Lieberman N. A. P., Peddu V., Xie X., Shi P.-Y., Greninger A. L., Gellman S. H., Bente D. A., Moscona A., Porotto M., Inhibition of coronavirus entry in vitro and ex vivo by a lipid-conjugated peptide derived from the SARS-CoV-2 spike glycoprotein HRC domain. mBio 11, e01935-20 (2020). 10.1128/mBio.01935-20 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous