Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 1;36(4):1087-1098.

Anti-inflammatory effect of mushrooms in dengue-infected human monocytes

Affiliations
  • PMID: 33597478
Free article

Anti-inflammatory effect of mushrooms in dengue-infected human monocytes

K Ellan et al. Trop Biomed. .
Free article

Abstract

Pathogenesis of dengue fever has been associated with the activation of the cytokine cascade that triggered inflammatory responses. The inflammatory reactions in dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS) are the main cause of haemorrhagic manifestations, coagulation disorders, vascular permeability, hypotension and shock which could exacerbate the condition of the disease. In an earlier study, extracts belonging to Lignosus rhinocerotis, Pleurotus giganteus, Hericium erinaceus, Schizophyllum commune and Ganoderma lucidium mushrooms were screened for antidengue virus activities. We found that hot aqueous extract (HAE) and aqueous soluble separated from ethanol extract (ASE) exhibited their potential to reduce dengue viral load which were observed in plaque reduction assay and real-time RT-PCR. In continuation of our previous findings, this study was initiated to further investigate the other aspect; the anti-inflammatory activities of HAE and ASE of L. rhinocerotis, P. giganteus, H. erinaceus, S. commune and G. lucidium on human monocytes infected with dengue virus-2 (DENV-2) New guinea C strain. Human monocytes infected with DENV-2 were treated with mushroom extracts for 48 hours. The cytokine profile coincides with dengue infection, i.e. IFN-γ, TNF-α, IL-1β, IL-6, IL-8, and IL-10 were measured by BD OptEIATM Elisa Kit. The expression of these cytokines was significantly elevated in untreated infected cells two days after infection. However, after treated with mushroom extracts prominent anti-inflammatory effect were detected towards IFN-γ, IL-10, TNF-α, IL-6, and IL-1β. The most significant anti-inflammatory effects were detected in HAE of G. lucidium, S. commune, P. giganteus and ASE of L. rhinocerotis and the effects were comparable with dexamethasone, the reference inhibitor. These results demonstrated that mushroom HAE or ASE could successfully have suppressed cytokine production in dengue-infected monocytes and has a great potential to develop an antiinflammatory agent from mushroom extract for the treatment of dengue infection.

PubMed Disclaimer