High-resolution X-ray luminescence extension imaging
- PMID: 33597760
- DOI: 10.1038/s41586-021-03251-6
High-resolution X-ray luminescence extension imaging
Abstract
Current X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional objects because fabrication of large-area, flexible, silicon-based photodetectors on highly curved surfaces remains a challenge1-3. Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution, three-dimensional imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated by quantum mechanical simulations of defect formation and electronic structures, our experimental characterizations reveal that slow hopping of trapped electrons due to radiation-triggered anionic migration in host lattices can induce more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging with resolution greater than 20 line pairs per millimetre and optical memory longer than 15 days. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and offer a paradigm to motivate future research in wearable X-ray detectors for patient-centred radiography and mammography, imaging-guided therapeutics, high-energy physics and deep learning in radiology.
Comment in
-
Glowing nanocrystals enable 3D X-ray imaging.Nature. 2021 Feb;590(7846):396-397. doi: 10.1038/d41586-021-00350-2. Nature. 2021. PMID: 33597763 No abstract available.
Similar articles
-
High-Confidentiality X-Ray Imaging Encryption Using Prolonged Imperceptible Radioluminescence Memory Scintillators.Adv Mater. 2023 Dec;35(52):e2309413. doi: 10.1002/adma.202309413. Epub 2023 Nov 27. Adv Mater. 2023. PMID: 37950585
-
High-Performance X-Ray Imaging using Lanthanide Metal-Organic Frameworks.Adv Sci (Weinh). 2023 May;10(15):e2207004. doi: 10.1002/advs.202207004. Epub 2023 Mar 22. Adv Sci (Weinh). 2023. PMID: 36950755 Free PMC article.
-
Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics.Acc Chem Res. 2023 Jan 3;56(1):37-51. doi: 10.1021/acs.accounts.2c00517. Epub 2022 Dec 19. Acc Chem Res. 2023. PMID: 36533853 Review.
-
High-resolution flexible X-ray luminescence imaging enabled by eco-friendly CuI scintillators.Front Chem. 2022 Oct 31;10:1052574. doi: 10.3389/fchem.2022.1052574. eCollection 2022. Front Chem. 2022. PMID: 36385989 Free PMC article.
-
The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography.Clin Radiol. 2008 Oct;63(10):1073-85. doi: 10.1016/j.crad.2008.06.002. Clin Radiol. 2008. PMID: 18774353 Review.
Cited by
-
Limitation of room temperature phosphorescence efficiency in metal organic frameworks due to triplet-triplet annihilation.Front Chem. 2022 Oct 31;10:1010857. doi: 10.3389/fchem.2022.1010857. eCollection 2022. Front Chem. 2022. PMID: 36386002 Free PMC article.
-
Bioimaging and prospects of night pearls-based persistence phosphors in cancer diagnostics.Exploration (Beijing). 2024 Jan 23;4(4):20230124. doi: 10.1002/EXP.20230124. eCollection 2024 Aug. Exploration (Beijing). 2024. PMID: 39175886 Free PMC article. Review.
-
Dual heterogeneous interfaces enhance X-ray excited persistent luminescence for low-dose 3D imaging.Nat Commun. 2024 Feb 7;15(1):1140. doi: 10.1038/s41467-024-45390-0. Nat Commun. 2024. PMID: 38326310 Free PMC article.
-
Color-Tunable and Stable Copper Iodide Cluster Scintillators for Efficient X-Ray Imaging.Adv Sci (Weinh). 2023 Feb;10(5):e2205526. doi: 10.1002/advs.202205526. Epub 2022 Dec 3. Adv Sci (Weinh). 2023. PMID: 36461749 Free PMC article.
-
High-Efficiency and Stable Long-Persistent Luminescence from Undoped Cesium Cadmium Chlorine Crystals Induced by Intrinsic Point Defects.Adv Sci (Weinh). 2023 May;10(15):e2207331. doi: 10.1002/advs.202207331. Epub 2023 Feb 24. Adv Sci (Weinh). 2023. PMID: 36825674 Free PMC article.
References
-
- Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). - DOI
-
- Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). - DOI
-
- Blahuta, S., Bessiere, A., Gourier, D., Ouspenski, V. & Viana, B. Effect of the X-ray dose on the luminescence properties of Ce:LYSO and co-doped Ca,Ce:LYSO single crystals for scintillation applications. Opt. Mater. 35, 1865–1868 (2013). - DOI
-
- Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). - DOI
-
- Yakunin, S. et al. Detection of X-ray photons by solution-processed organic–inorganic perovskites. Nat. Photon. 9, 444–449 (2015). - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources