Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar;16(3):1740-1760.
doi: 10.1038/s41596-020-00483-0. Epub 2021 Feb 17.

Yeast-based bioproduction of disulfide-rich peptides and their cyclization via asparaginyl endopeptidases

Affiliations

Yeast-based bioproduction of disulfide-rich peptides and their cyclization via asparaginyl endopeptidases

Kuok Yap et al. Nat Protoc. 2021 Mar.

Abstract

Cyclic disulfide-rich peptides have attracted significant interest in drug development and biotechnology. Here, we describe a protocol for producing cyclic peptide precursors in Pichia pastoris that undergo in vitro enzymatic maturation into cyclic peptides using recombinant asparaginyl endopeptidases (AEPs). Peptide precursors are expressed with a C-terminal His tag and secreted into the media, enabling facile purification by immobilized metal affinity chromatography. After AEP-mediated cyclization, cyclic peptides are purified by reverse-phase high-performance liquid chromatography and characterized by mass spectrometry, peptide mass fingerprinting, NMR spectroscopy, and activity assays. We demonstrate the broad applicability of this protocol by generating cyclic peptides from three distinct classes that are either naturally occurring or synthetically backbone cyclized, and range in size from 14 amino acids with one disulfide bond, to 34 amino acids with a cystine knot comprising three disulfide bonds. The protocol requires 14 d to identify and optimize a high-expressing Pichia clone in small-scale cultures (24 well plates or 50 mL tubes), after which large-scale production in a bioreactor and peptide purification can be completed in 10 d. We use the cyclotide Momordica cochinchinensis trypsin inhibitor II as an example. We also include a protocol for recombinant AEP production in Escherichia coli as AEPs are emerging tools for orthogonal peptide and protein ligation. We focus on two AEPs that preferentially cyclize different peptide precursors, namely an engineered AEP with improved catalytic efficiency [C247A]OaAEP1b and the plant-derived MCoAEP2. Rudimentary proficiency and equipment in molecular biology, protein biochemistry and analytical chemistry are needed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Colgrave, M. L. & Craik, D. J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43, 5965–5975 (2004). - DOI
    1. Colgrave, M. L., Korsinczky, M. J., Clark, R. J., Foley, F. & Craik, D. J. Sunflower trypsin inhibitor-1, proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers 94, 665–672 (2010). - DOI
    1. Isidro-Llobet, A. et al. Sustainability challenges in peptide synthesis and purification: from R&D to production. J. Org. Chem. 84, 4615–4628 (2019). - DOI
    1. Merrifield, R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963). - DOI
    1. Yap, K. et al. An environmentally sustainable biomimetic production of cyclic disulfide-rich peptides. Green Chem. 22, 5002–5016 (2020). - DOI

Publication types

Supplementary concepts

LinkOut - more resources