Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul 3;169(5):527-533.
doi: 10.1093/jb/mvab018.

Potential roles of G-quadruplex structures in RNA granules for physiological and pathological phase separation

Affiliations
Review

Potential roles of G-quadruplex structures in RNA granules for physiological and pathological phase separation

Sefan Asamitsu et al. J Biochem. .

Abstract

Cellular liquid-liquid phase separation is a physiologically inevitable phenomenon in molecularly crowded environments inside cells and serves to compartmentalize biomolecules to facilitate several functions, forming cytoplasmic and nuclear RNA granules. Abnormalities in the phase separation process in RNA granules are implicated in the onset of several neurodegenerative diseases; the initial liquid-like phase-separated droplets containing pathogenic proteins are prone to aberrantly mature into solid-like droplets. RNAs are involved in the maturation of physiological and pathological RNA granules and are essential for governing the fate of phase-transition processes. Notably, RNA G-quadruplex (G4RNA), which is the secondary structure of nucleic acids that are formed in guanine-rich sequences, appears to be an advantageous scaffold for RNA-derived phase separation because of its multivalent interactions with RNAs and RNA-binding proteins. Here, we summarize the properties of RNA granules in physiological and pathological phase separation and discuss the potential roles of G4RNA in granules.

Keywords: RNA G-quadruplex; RNA granules; compartmentalization; neurodegenerative diseases; phase separation.

PubMed Disclaimer