SMARCA2 Is a Novel Interactor of NSD2 and Regulates Prometastatic PTP4A3 through Chromatin Remodeling in t(4;14) Multiple Myeloma
- PMID: 33602783
- DOI: 10.1158/0008-5472.CAN-20-2946
SMARCA2 Is a Novel Interactor of NSD2 and Regulates Prometastatic PTP4A3 through Chromatin Remodeling in t(4;14) Multiple Myeloma
Abstract
NSD2 is the primary oncogenic driver in t(4;14) multiple myeloma. Using SILAC-based mass spectrometry, we demonstrate a novel role of NSD2 in chromatin remodeling through its interaction with the SWI/SNF ATPase subunit SMARCA2. SMARCA2 was primarily expressed in t(4;14) myeloma cells, and its interaction with NSD2 was noncanonical and independent of the SWI/SNF complex. RNA sequencing identified PTP4A3 as a downstream target of NSD2 and mapped NSD2-SMARCA2 complex on PTP4A3 promoter. This led to a focal increase in the permissive H3K36me2 mark and transcriptional activation of PTP4A3. High levels of PTP4A3 maintained MYC expression and correlated with a 54-gene MYC signature in t(4;14) multiple myeloma. Importantly, this mechanism was druggable by targeting the bromodomain of SMARCA2 using the specific BET inhibitor PFI-3, leading to the displacement of NSD2 from PTP4A3 promoter and inhibiting t(4;14) myeloma cell viability. In vivo, treatment with PFI-3 reduced the growth of t(4;14) xenograft tumors. Together, our study reveals an interplay between histone-modifying enzymes and chromatin remodelers in the regulation of myeloma-specific genes that can be clinically intervened. SIGNIFICANCE: This study uncovers a novel, SWI/SNF-independent interaction between SMARCA2 and NSD2 that facilitates chromatin remodeling and transcriptional regulation of oncogenes in t(4;14) multiple myeloma, revealing a therapeutic vulnerability targetable by BET inhibition.
©2021 American Association for Cancer Research.
References
-
- Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364:1046–60.
-
- Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene. 2001;20:5611–22.
-
- Chesi M, Bergsagel PL. Molecular pathogenesis of multiple myeloma: basic and clinical updates. Int J Hematol. 2013;97:313–23.
-
- Chang H, Sloan S, Li D, Zhuang L, Yi QL, Chen CI, et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol. 2004;125:64–8.
-
- Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood. 2005;105:4060–9.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases