Robust decomposition of cell type mixtures in spatial transcriptomics
- PMID: 33603203
- PMCID: PMC8606190
- DOI: 10.1038/s41587-021-00830-w
Robust decomposition of cell type mixtures in spatial transcriptomics
Abstract
A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Conflict of interest statement
Conflict of Interest Statement
The authors declare no conflict of interest.
Figures






Similar articles
-
STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing.Nucleic Acids Res. 2022 Apr 22;50(7):e42. doi: 10.1093/nar/gkac150. Nucleic Acids Res. 2022. PMID: 35253896 Free PMC article.
-
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data.Nat Commun. 2022 Apr 29;13(1):2339. doi: 10.1038/s41467-022-30033-z. Nat Commun. 2022. PMID: 35487922 Free PMC article.
-
Cell type-specific inference of differential expression in spatial transcriptomics.Nat Methods. 2022 Sep;19(9):1076-1087. doi: 10.1038/s41592-022-01575-3. Epub 2022 Sep 1. Nat Methods. 2022. PMID: 36050488 Free PMC article.
-
A comprehensive comparison on cell-type composition inference for spatial transcriptomics data.Brief Bioinform. 2022 Jul 18;23(4):bbac245. doi: 10.1093/bib/bbac245. Brief Bioinform. 2022. PMID: 35753702 Free PMC article. Review.
-
Principles of Spatial Transcriptomics Analysis: A Practical Walk-Through in Kidney Tissue.Front Physiol. 2022 Jan 6;12:809346. doi: 10.3389/fphys.2021.809346. eCollection 2021. Front Physiol. 2022. PMID: 35069263 Free PMC article. Review.
Cited by
-
Synthetic DNA barcodes identify singlets in scRNA-seq datasets and evaluate doublet algorithms.Cell Genom. 2024 Jul 10;4(7):100592. doi: 10.1016/j.xgen.2024.100592. Epub 2024 Jun 25. Cell Genom. 2024. PMID: 38925122 Free PMC article.
-
Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight.Cell Rep Methods. 2022 Oct 31;2(11):100325. doi: 10.1016/j.crmeth.2022.100325. eCollection 2022 Nov 21. Cell Rep Methods. 2022. PMID: 36452864 Free PMC article. Review.
-
A guidebook of spatial transcriptomic technologies, data resources and analysis approaches.Comput Struct Biotechnol J. 2023 Jan 16;21:940-955. doi: 10.1016/j.csbj.2023.01.016. eCollection 2023. Comput Struct Biotechnol J. 2023. PMID: 38213887 Free PMC article. Review.
-
Revealing gene function with statistical inference at single-cell resolution.Nat Rev Genet. 2024 Sep;25(9):623-638. doi: 10.1038/s41576-024-00750-w. Epub 2024 Jul 1. Nat Rev Genet. 2024. PMID: 38951690 Review.
-
STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning.Commun Biol. 2024 Jan 6;7(1):56. doi: 10.1038/s42003-023-05640-1. Commun Biol. 2024. PMID: 38184694 Free PMC article.
References
-
- Stickels RR et al. Sensitive spatial genome wide expression profiling at cellular resolution. bioRxiv (2020). https://www.biorxiv.org/content/early/2020/03/14/2020.03.12.989806.full.pdf.
-
- 10x Genomics. 10x genomics: Visium spatial gene expression. https://www.10xgenomics.com/solutions/spatial-gene-expression/ (2020).
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical