Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 11:14:229-237.
doi: 10.2147/PGPM.S281645. eCollection 2021.

No Association Between Pharmacogenomics Variants and Hospital and Emergency Department Utilization: A Mayo Clinic Biobank Retrospective Study

Affiliations

No Association Between Pharmacogenomics Variants and Hospital and Emergency Department Utilization: A Mayo Clinic Biobank Retrospective Study

Paul Y Takahashi et al. Pharmgenomics Pers Med. .

Abstract

Background: The use of pharmacogenomics data is increasing in clinical practice. However, it is unknown if pharmacogenomics data can be used more broadly to predict outcomes like hospitalization or emergency department (ED) visit. We aim to determine the association between selected pharmacogenomics phenotypes and hospital utilization outcomes (hospitalization and ED visits).

Methods: This cohort study utilized 10,078 patients from the Mayo Clinic Biobank in the RIGHT protocol with sequence and interpreted phenotypes for 10 selected pharmacogenes including CYP2D6, CYP2C9, CYP2C19, CYP3A5, HLA B 5701, HLA B 5702, HLA B 5801, TPMT, SLCO1B1, and DPYD. The primary outcome was hospitalization with ED visits as a secondary outcome. We used Cox proportional hazards model to test the association between each pharmacogenomics phenotype and the risk of the outcomes.

Results: During the follow-up period (median [in years] = 7.3), 13% (n=1354) and 8% (n=813) of the subjects experienced hospitalization and ED visits, respectively. Compared to subjects who did not experience hospitalization, hospitalized patients were older (median age [in years]: 67 vs 65), poorer self-rated health (15% vs 4.7% for fair/poor), and higher disease burden (median number of chronic conditions: 7 vs 4) at baseline. There was no association of hospitalization with any of the pharmacogenomics phenotypes. The pharmacogenomics phenotypes were not associated with disease burden, a well-established risk factor for hospital utilization outcomes. Similar findings were observed for patients with ED visits during the follow-up period.

Conclusion: We found no association of 10 well-established pharmacogenomics phenotypes with either hospitalization or ED visits in this relatively large biobank population and outside the context of specific drug use related to these genes. Traditional risk factors for hospitalization like age and self-rated health were much more likely to predict hospitalization and/or ED visits than this pharmacogenomics information.

Keywords: emergency department; hospitalization; pharmacogenomics.

PubMed Disclaimer

Conflict of interest statement

Dr James R Cerhan reports grants from NanoString, personal fees from Jannsen, nothing from Celgene, nothing from Genentech, outside the submitted work. The authors report no other potential conflicts of interest in this manuscript or work.

Similar articles

Cited by

References

    1. Bielinski SJ, St Sauver JL, Olson JE, et al. Cohort Profile: the right drug, right dose, right time: using genomic data to individualize treatment protocol (RIGHT protocol). Int J Epidemiol. 2020;49(1):23–24k. doi:10.1093/ije/dyz123 - DOI - PMC - PubMed
    1. Porter ME, Pabo EA, Lee TH. Redesigning primary care: a strategic vision to improve value by organizing around patients’ needs. Health Aff (Millwood). 2013;32(3):516–525. doi:10.1377/hlthaff.2012.0961 - DOI - PubMed
    1. Clough JD, Riley GF, Cohen M, et al. Patterns of care for clinically distinct segments of high cost Medicare beneficiaries. Healthc (Amst). 2016;4(3):160–165. doi:10.1016/j.hjdsi.2015.09.005 - DOI - PubMed
    1. Boult C, Dowd B, McCaffrey D, Boult L, Hernandez R, Krulewitch H. Screening elders for risk of hospital admission. J Am Geriatr Soc. 1993;41(8):811–817. doi:10.1111/j.1532-5415.1993.tb06175.x - DOI - PubMed
    1. Crane SJ, Tung EE, Hanson GJ, Cha S, Chaudhry R, Takahashi PY. Use of an electronic administrative database to identify older community dwelling adults at high-risk for hospitalization or emergency department visits: the elders risk assessment index. BMC Health Serv Res. 2010;10:338. doi:10.1186/1472-6963-10-338 - DOI - PMC - PubMed