Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism
- PMID: 33605428
- DOI: 10.1002/bit.27717
Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism
Abstract
Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals. However, as a non-oleaginous yeast, S. cerevisiae has a limited production capacity for lipophilic compounds, such as β-carotene. To increase its accumulation of β-carotene, we engineered different lipid metabolic pathways in a β-carotene producing strain and investigated the relationship between lipid components and the accumulation of β-carotene. We found that overexpression of sterol ester synthesis genes ARE1 and ARE2 increased β-carotene yield by 1.5-fold. Deletion of phosphatidate phosphatase (PAP) genes (PAH1, DPP1, and LPP1) also increased β-carotene yield by twofold. Combining these two strategies resulted in a 2.4-fold improvement in β-carotene production compared with the starting strain. These results demonstrated that regulating lipid metabolism pathways is important for β-carotene accumulation in S. cerevisiae, and may also shed insights to the accumulation of other lipophilic compounds in yeast.
Keywords: Saccharomyces cerevisiae; lipid components; lipid metabolism pathways; β-carotene.
© 2021 Wiley Periodicals LLC.
Similar articles
-
Induction of point and structural mutations in engineered yeast Saccharomyces cerevisiae improve carotenoid production.World J Microbiol Biotechnol. 2024 Jun 3;40(7):230. doi: 10.1007/s11274-024-04037-4. World J Microbiol Biotechnol. 2024. PMID: 38829459
-
Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.Metab Eng. 2019 Mar;52:134-142. doi: 10.1016/j.ymben.2018.11.009. Epub 2018 Nov 22. Metab Eng. 2019. PMID: 30471360
-
Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates.FEMS Yeast Res. 2021 Jan 16;21(1):foaa068. doi: 10.1093/femsyr/foaa068. FEMS Yeast Res. 2021. PMID: 33332529 Free PMC article.
-
Discoveries of the phosphatidate phosphatase genes in yeast published in the Journal of Biological Chemistry.J Biol Chem. 2019 Feb 1;294(5):1681-1689. doi: 10.1074/jbc.TM118.004159. Epub 2018 Jul 30. J Biol Chem. 2019. PMID: 30061152 Free PMC article. Review.
-
Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene.Crit Rev Biotechnol. 2024 May;44(3):337-351. doi: 10.1080/07388551.2023.2166809. Epub 2023 Feb 13. Crit Rev Biotechnol. 2024. PMID: 36779332 Review.
Cited by
-
De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts.Nat Commun. 2022 Jun 1;13(1):3040. doi: 10.1038/s41467-022-30826-2. Nat Commun. 2022. PMID: 35650215 Free PMC article.
-
Metabolic Engineering of Saccharomyces cerevisiae for Efficient Retinol Synthesis.J Fungi (Basel). 2023 Apr 26;9(5):512. doi: 10.3390/jof9050512. J Fungi (Basel). 2023. PMID: 37233223 Free PMC article.
-
Engineering cellular dephosphorylation boosts (+)-borneol production in yeast.Acta Pharm Sin B. 2025 Feb;15(2):1171-1182. doi: 10.1016/j.apsb.2024.12.039. Epub 2025 Jan 3. Acta Pharm Sin B. 2025. PMID: 40177556 Free PMC article.
-
Matrix regulation: a plug-and-tune method for combinatorial regulation in Saccharomyces cerevisiae.Nat Commun. 2025 Aug 15;16(1):7624. doi: 10.1038/s41467-025-62886-5. Nat Commun. 2025. PMID: 40817118 Free PMC article.
-
Protein engineering of invertase for enhancing yeast dough fermentation under high-sucrose conditions.Folia Microbiol (Praha). 2023 Apr;68(2):207-217. doi: 10.1007/s12223-022-01006-y. Epub 2022 Oct 6. Folia Microbiol (Praha). 2023. PMID: 36201138
References
REFERENCES
-
- Adeyo, O., Horn, P. J., Lee, S., Binns, D. D., Chandrahas, A., Chapman, K. D., & Goodman, J. M. (2011). The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. Journal of Cell Biology, 192, 1043-1055.
-
- Alvarez, H. M., & Steinbuchel, A. (2002). Triacylglycerols in prokaryotic microorganisms. Applied Microbiology and Biotechnology, 60, 367-376.
-
- Arendt, P., Miettinen, K., Pollier, J., De Rycke, R., Callewaert, N., & Goossens, A. (2017). An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metabolic Engineering, 40, 165-175.
-
- Banerjee, A., & Sharkey, T. D. (2014). Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Natural Products Reports, 31, 1043-1055.
-
- Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., Si, T., & Zhao, H. (2015). Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synthetic Biology, 4, 585-594.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials