Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun;40(6):1555-1567.
doi: 10.1109/TMI.2021.3060465. Epub 2021 Jun 1.

Cascaded Regression Neural Nets for Kidney Localization and Segmentation-free Volume Estimation

Cascaded Regression Neural Nets for Kidney Localization and Segmentation-free Volume Estimation

Mohammad Arafat Hussain et al. IEEE Trans Med Imaging. 2021 Jun.

Abstract

Kidney volume is an essential biomarker for a number of kidney disease diagnoses, for example, chronic kidney disease. Existing total kidney volume estimation methods often rely on an intermediate kidney segmentation step. On the other hand, automatic kidney localization in volumetric medical images is a critical step that often precedes subsequent data processing and analysis. Most current approaches perform kidney localization via an intermediate classification or regression step. This paper proposes an integrated deep learning approach for (i) kidney localization in computed tomography scans and (ii) segmentation-free renal volume estimation. Our localization method uses a selection-convolutional neural network that approximates the kidney inferior-superior span along the axial direction. Cross-sectional (2D) slices from the estimated span are subsequently used in a combined sagittal-axial Mask-RCNN that detects the organ bounding boxes on the axial and sagittal slices, the combination of which produces a final 3D organ bounding box. Furthermore, we use a fully convolutional network to estimate the kidney volume that skips the segmentation procedure. We also present a mathematical expression to approximate the 'volume error' metric from the 'Sørensen-Dice coefficient.' We accessed 100 patients' CT scans from the Vancouver General Hospital records and obtained 210 patients' CT scans from the 2019 Kidney Tumor Segmentation Challenge database to validate our method. Our method produces a kidney boundary wall localization error of ~2.4mm and a mean volume estimation error of ~5%.

PubMed Disclaimer

Publication types

LinkOut - more resources