Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains
- PMID: 3360782
Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains
Abstract
Hydrodynamic, chromatographic, and spectroscopic techniques were used to study the aqueous solution properties of the two structural domains of human apolipoprotein (apo) E3. An amino-terminal thrombolytic fragment of apoE (22 kDa, residues 1-191) and a carboxyl-terminal thrombolytic fragment of apoE (10 kDa, residues 216-299) were used as models for the two domains. Sedimentation equilibrium ultracentrifugation showed that apoE and the 10-kDa model domain self-associated predominantly as tetramers. The 22-kDa model domain was primarily monomeric. Molecular weights calculated from the weight average sedimentation and diffusion coefficients or from the sedimentation coefficients and Stokes radii were in agreement with the sedimentation equilibrium results. Derived frictional coefficients suggest larger axial ratios and/or more extensive hydration for the apoE and the 10-kDa domain tetramers as compared with the 22-kDa domain. Proteolysis of apoE followed by high performance liquid chromatography showed rapid production of free 22-kDa domain, whereas the free 10-kDa domain appeared as a tetramer late in the course of the hydrolysis. Assessment by circular dichroism demonstrated that both model domains and apoE had over 54% alpha-helical content, which changed little in a detergent (octyl-beta-D-glucopyranoside) or lipid (dimyristoylphosphatidylcholine) environment. In contrast to the circular dichroism results, apoE and the 10-kDa domain showed a marked blue shift in the fluorescence maximum in a lipid environment. The results suggest that the self-association of apoE in solution as a tetramer is mediated by the carboxyl-terminal domain and that the amino- and carboxyl-terminal domains do not associate with one another. The amino-terminal domain is most likely compact and globular, whereas the carboxyl-terminal domain is probably elongated. The isolated model domains appear to have structures that are similar to those of the domains in the intact protein.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
