Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr;106(4):1365-73.
doi: 10.1083/jcb.106.4.1365.

Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration

Affiliations

Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration

T J Herbst et al. J Cell Biol. 1988 Apr.

Abstract

Laminin and type IV collagen were compared for the ability to promote aortic endothelial cell adhesion and directed migration in vitro. Substratum-adsorbed IV promoted aortic endothelial cell adhesion in a concentration dependent fashion attaining a maximum level 141-fold greater than controls within 30 min. Aortic endothelial cell adhesion to type IV collagen was not inhibited by high levels (10(-3) M) of arginyl-glycyl-aspartyl-serine. In contrast, adhesion of aortic endothelial cells on laminin was slower, attaining only 53% of the adhesion observed on type IV collagen by 90 min. Type IV collagen when added to the lower well of a Boyden chamber stimulated the directional migration of aortic endothelial cells in a concentration dependent manner with a maximal response 6.9-fold over control levels, whereas aortic endothelial cells did not migrate in response to laminin at any concentration (.01-2.0 X 10(-7) M). Triple helix-rich fragments of type IV collagen were nearly as active as intact type IV collagen in stimulating both adhesion and migration whereas the carboxy terminal globular domain was less active at promoting adhesion (36% of the adhesion promoted by intact type IV collagen) or migration. Importantly, aortic endothelial cells also migrate to substratum adsorbed gradients of type IV collagen suggesting that the mechanism of migration is haptotactic in nature. These results demonstrate that the aortic endothelial cell adhesion and migration is preferentially promoted by type IV collagen compared with laminin, and has a complex molecular basis which may be important in angiogenesis and large vessel repair.

PubMed Disclaimer

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5985-8 - PubMed
    1. Lab Invest. 1977 Jan;36(1):18-25 - PubMed
    1. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849-57 - PubMed
    1. In Vitro. 1978 Dec;14(12):966-80 - PubMed

Publication types