Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr:69:101986.
doi: 10.1016/j.media.2021.101986. Epub 2021 Jan 31.

Combining anatomical and functional networks for neuropathology identification: A case study on autism spectrum disorder

Affiliations

Combining anatomical and functional networks for neuropathology identification: A case study on autism spectrum disorder

Sarah Itani et al. Med Image Anal. 2021 Apr.

Abstract

While the prevalence of Autism Spectrum Disorder (ASD) is increasing, research continues in an effort to identify common etiological and pathophysiological bases. In this regard, modern machine learning and network science pave the way for a better understanding of the neuropathology and the development of diagnosis aid systems. The present work addresses the classification of neurotypical and ASD subjects by combining knowledge about both the structure and the functional activity of the brain. In particular, we model the brain structure as a graph, and the resting-state functional MRI (rs-fMRI) signals as values that live on the nodes of that graph. We then borrow tools from the emerging field of Graph Signal Processing (GSP) to build features related to the frequency content of these signals. In order to make these features highly discriminative, we apply an extension of the Fukunaga-Koontz transform. Finally, we use these new markers to train a decision tree, an interpretable classification scheme, which results in a final diagnosis aid model. Interestingly, the resulting decision tree outperforms state-of-the-art methods on the publicly available Autism Brain Imaging Data Exchange (ABIDE) collection. Moreover, the analysis of the predictive markers reveals the influence of the frontal and temporal lobes in the diagnosis of the disorder, which is in line with previous findings in the literature of neuroscience. Our results indicate that exploiting jointly structural and functional information of the brain can reveal important information about the complexity of the neuropathology.

Keywords: Autism spectrum disorder; Explainable artificial intelligence; Graph signal processing; fMRI.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest Authors declare that they have no conflict of interest.

Publication types