How different are the arsenic fractions inhibit alkaline phosphatases on aggregates scale?
- PMID: 33610991
- DOI: 10.1016/j.scitotenv.2021.145728
How different are the arsenic fractions inhibit alkaline phosphatases on aggregates scale?
Abstract
Arsenate [As(V)], in general, is associated with various aggregates and exists as different species in soil, which in turn influences its toxicity and potential contamination. Previous studies have demonstrated the usefulness of alkaline phosphatases (ALP) to evaluate As(V) pollution. However, the effect of different arsenic fractions on ALP among soil aggregates is still unclear. Thus, the distribution of As fractions and ALP kinetics was determined in four-month As-aged paddy soil aggregates. Results revealed the two major fractions of As in aggregates were humic-bound and Fe and Mn oxides-bound [both around 30% under 800 mg kg-1 of As(V)]. Besides, it was observed that available soil phosphorus could positively affect the relative content of water-soluble, exchangeable and carbonate-bound arsenic. In the kinetics experiment, both the Michaelis-Menten constant (Km) and maximum reaction velocity (Vmax) of ALP increased with increasing As(V) concentration under four months ageing for each size aggregate. Multiple linear stepwise regression analysis between kcat and the relative content of arsenic fraction indicated that carbonate-bound arsenic is the main fraction that inhibited the kcat for macroaggregates (> 0.25 mm size). For soil aggregates of 0.1-0.25 mm size, kcat increased with an increase in arsenic residual fraction. As for aggregates <0.1 mm size, Fe and Mn oxide-bound fraction is the main fraction that inhibited the kcat. Overall, this study suggests carbonate-bound and Fe and Mn oxide-bound arsenic fractions could decrease the ALP activities via a decrease in the catalytic efficiency in macroaggregates and <0.1 mm size aggregates, respectively. Besides, available phosphorus should be considered as the main factor when assessing As biotoxicity and mobility.
Keywords: Alkaline phosphatase; Arsenic fractions; Kinetics; Soil aggregates.
Copyright © 2021 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous