Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 5:11:616832.
doi: 10.3389/fimmu.2020.616832. eCollection 2020.

Bronchoalveolar Lavage Fluid Reflects a TH1-CD21low B-Cell Interaction in CVID-Related Interstitial Lung Disease

Affiliations

Bronchoalveolar Lavage Fluid Reflects a TH1-CD21low B-Cell Interaction in CVID-Related Interstitial Lung Disease

David Friedmann et al. Front Immunol. .

Abstract

Background: About 20% of patients with common variable immunodeficiency (CVID) suffer from interstitial lung disease (ILD) as part of a systemic immune dysregulation. Current understanding suggests a role of B cells in the pathogenesis based on histology and increased levels of BAFF and IgM associated with active disease corroborated by several reports which demonstrate the successful use of rituximab in CVID-ILD. It is debated whether histological confirmation by biopsy or even video-assisted thoracoscopy is required and currently not investigated whether less invasive methods like a bronchoalveolar lavage (BAL) might provide an informative diagnostic tool.

Objective: To gain insight into potential immune mechanisms underlying granulomatous and lymphocytic interstitial lung disease (GLILD) and to define biomarkers for progressive ILD by characterizing the phenotype of B- and T-cell populations and cytokine profiles in BAL fluid (BALF) of CVID-ILD compared to sarcoidosis patients and healthy donors (HD).

Methods: Sixty-four CVID, six sarcoidosis, and 25 HD BALF samples were analyzed by flow cytometric profiling of B- and T-cells and for cytokines by ELISA and Multiplexing LASER Bead technology.

Results: Both sarcoidosis and CVID-ILD are characterized by a predominantly T-cell mediated lymphocytosis in the BALF. There is an increase in T follicular helper (TFH)-like memory and decrease of regulatory T cells in CVID-ILD BALF. This TFH-like cell subset is clearly skewed toward TH1 cells in CVID-ILD. In contrast to sarcoidosis, CVID-ILD BALF contains a higher percentage of B cells comprising mostly CD21low B cells, but less class-switched memory B cells. BALF analysis showed increased levels of APRIL, CXCL10, and IL-17.

Conclusion: Unlike in sarcoidosis, B cells are expanded in BALF of CVID-ILD patients. This is associated with an expansion of TFH- and TPH-like cells and an increase in APRIL potentially supporting B-cell survival and differentiation and proinflammatory cytokines reflecting not only the previously described TH1 profile seen in CVID patients with secondary immune dysregulation. Thus, the analysis of BALF might be of diagnostic value not only in the diagnosis of CVID-ILD, but also in the evaluation of the activity of the disease and in determining potential treatment targets confirming the prominent role of B-cell targeted strategies.

Keywords: CD21low B cells; TFH and TPH cells; common variable immunodeficiency; cytokines; interstitial lung disease.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Increased percentage of B cells in bronchoalveolar lavage fluid (BALF) of common variable immunodeficiency (CVID)-interstitial lung disease (ILD) compared to sarcoidosis. The diagnostic workup of the BALF of patients with CVID or sarcoidosis for cell counts, percentages of lymphocytes, neutrophils, eosinophils, macrophages, and basophils/mast cells (A), CD3+ T cells (B), CD20+ B cells (C), as well as CD4+ and CD8+ T cells including CD4/CD8 ratio (D). The normal range is marked in grey for each population and defined genetic defects are marked by color coding. Sarc., sarcoidosis. *P <.05, **P <.01.
Figure 2
Figure 2
Increased percentage of TFH1-like and TPH cells in bronchoalveolar lavage fluid (BALF) of common variable immunodeficiency (CVID)-interstitial lung disease (ILD) compared to sarcoidosis. Memory CD4 T cells were differentiated into CXCR5pos TFH1-, TFH1/17-, TFH17-, TFH2-like cell subsets according to their CXCR3 and CCR6 expression (A) and total memory CD4 T cells into CXCR5negPD1high TPH cells. Shown are two examples with high and low amounts of TPH cells (B). Corresponding statistics are shown below. Memory CD4 T cells were further differentiated into FoxP3+CD25+ Tregs, statistics are shown on the right (C). The mean fluorescence intensity (MFI) of FoxP3, CD25, CTLA-4 in Tregs is shown in (D) and the ratio of CXCR5pos memory CD4 TFH-like cells to Tregs in (E). Defined genetic defects are marked by color coding. *P <.05, **P <.01 ***P <.001, Sarc., sarcoidosis.
Figure 3
Figure 3
Increased percentage of CD21low cells in bronchoalveolar lavage fluid (BALF) of common variable immunodeficiency (CVID)-interstitial lung disease (ILD) compared to sarcoidosis. B cells were further divided into CD21low B cells, plasmablasts (PB) and CD21pos B cells. An exemplary FACS plot is shown in (A). Naive (IgD+CD27-), switched memory B cells (IgD-CD27+), atypical (IgD-CD27-) and non-switched memory B cells (IgD+CD27+) were gated from the CD21low B-cell compartment as well as from the CD21+ nonPB subset. IgA, IgG, IgM-only cells were gated out of the switched memory B cell gate (IgD-CD27+). Corresponding statistical analysis is shown in (B). Defined genetic defects are marked by color coding. *P <.05, **P <.01 ***P <.001, Sarc, sarcoidosis.
Figure 4
Figure 4
Altered cytokine milieu in bronchoalveolar lavage fluid (BALF) of common variable immunodeficiency (CVID)-interstitial lung disease (ILD). (A) ELISA of BALF supernatants for APRIL production. (B) Multiplex Bead Array of BALF supernatants for CXCL10, IL-4 and IL-17. Defined genetic defects are marked by color coding. *P <.05, **P <.01 ****P <.0001 HD, healthy control; Sarc, sarcoidosis.
Figure 5
Figure 5
Correlations between cell subsets and cytokines of bronchoalveolar lavage fluid (BALF). (A) Correlation of IL-17 in BALF of common variable immunodeficiency (CVID) patients with neutrophil numbers (n = 28), (B) of B cells and TPH cells (n = 16), (C) of CD21low B cells and TFH1 cell subset (n = 16) and (D) of IgApos CD21low B cells and TFH1 cells (n = 16). Correlation of total CD21low B cells (n = 13) (E), naïve CD21low B cells (n = 13) (F) and switched CD21pos B cells (n = 13) (G) in BALF and peripheral blood. Defined genetic defects are marked by color coding. *P <.05, **P <.01 ***P <.001, ****P <.0001.

Similar articles

Cited by

References

    1. Seidel MG, Kindle G, Gathmann B, Quinti I, Buckland M, van Montfrans J, et al. The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity. J Allergy Clin Immunol Practice (2019) 7(6):1763–70. 10.1016/j.jaip.2019.02.004 - DOI - PubMed
    1. Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, et al. International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. J Allergy Clin Immunol Practice (2016) 4(1):38–59. 10.1016/j.jaip.2015.07.025 - DOI - PMC - PubMed
    1. Tuijnenburg P, Lango Allen H, Burns SO, Greene D, Jansen MH, Staples E, et al. Loss-of-function nuclear factor kappaB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol (2018) 142(4):1285–96. 10.1016/j.jaci.2018.01.039 - DOI - PMC - PubMed
    1. Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis (2020) 7(1):26–37. 10.1016/j.gendis.2019.10.002 - DOI - PMC - PubMed
    1. Quinti I, Soresina A, Spadaro G, Martino S, Donnanno S, Agostini C, et al. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol (2007) 27(3):308–16. 10.1007/s10875-007-9075-1 - DOI - PubMed

Publication types

MeSH terms