Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 3:8:585868.
doi: 10.3389/fped.2020.585868. eCollection 2020.

Machine-Learning vs. Expert-Opinion Driven Logistic Regression Modelling for Predicting 30-Day Unplanned Rehospitalisation in Preterm Babies: A Prospective, Population-Based Study (EPIPAGE 2)

Affiliations

Machine-Learning vs. Expert-Opinion Driven Logistic Regression Modelling for Predicting 30-Day Unplanned Rehospitalisation in Preterm Babies: A Prospective, Population-Based Study (EPIPAGE 2)

Robert A Reed et al. Front Pediatr. .

Abstract

Introduction: Preterm babies are a vulnerable population that experience significant short and long-term morbidity. Rehospitalisations constitute an important, potentially modifiable adverse event in this population. Improving the ability of clinicians to identify those patients at the greatest risk of rehospitalisation has the potential to improve outcomes and reduce costs. Machine-learning algorithms can provide potentially advantageous methods of prediction compared to conventional approaches like logistic regression. Objective: To compare two machine-learning methods (least absolute shrinkage and selection operator (LASSO) and random forest) to expert-opinion driven logistic regression modelling for predicting unplanned rehospitalisation within 30 days in a large French cohort of preterm babies. Design, Setting and Participants: This study used data derived exclusively from the population-based prospective cohort study of French preterm babies, EPIPAGE 2. Only those babies discharged home alive and whose parents completed the 1-year survey were eligible for inclusion in our study. All predictive models used a binary outcome, denoting a baby's status for an unplanned rehospitalisation within 30 days of discharge. Predictors included those quantifying clinical, treatment, maternal and socio-demographic factors. The predictive abilities of models constructed using LASSO and random forest algorithms were compared with a traditional logistic regression model. The logistic regression model comprised 10 predictors, selected by expert clinicians, while the LASSO and random forest included 75 predictors. Performance measures were derived using 10-fold cross-validation. Performance was quantified using area under the receiver operator characteristic curve, sensitivity, specificity, Tjur's coefficient of determination and calibration measures. Results: The rate of 30-day unplanned rehospitalisation in the eligible population used to construct the models was 9.1% (95% CI 8.2-10.1) (350/3,841). The random forest model demonstrated both an improved AUROC (0.65; 95% CI 0.59-0.7; p = 0.03) and specificity vs. logistic regression (AUROC 0.57; 95% CI 0.51-0.62, p = 0.04). The LASSO performed similarly (AUROC 0.59; 95% CI 0.53-0.65; p = 0.68) to logistic regression. Conclusions: Compared to an expert-specified logistic regression model, random forest offered improved prediction of 30-day unplanned rehospitalisation in preterm babies. However, all models offered relatively low levels of predictive ability, regardless of modelling method.

Keywords: epidemiology; machine-learning; neonatology; prediction; rehospitalisation.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the study population derived from the EPIPAGE 2 cohort.
Figure 2
Figure 2
Receiver operating characteristic curves (ROC) for 10-fold cross-validated predictions and corresponding area under the curve (AUROC) for the logistic regression, LASSO and random forest models predicting unplanned rehospitalisation within 30 days. Developed on 859 eligible, complete-case babies in the EPIPAGE 2 cohort and validated using 10-fold cross-validation.
Figure 3
Figure 3
Calibration curve for the logistic regression, LASSO and random forest models comparing the observed probability of unplanned rehospitalisation within 30 days with predicted probability across risk quantiles. Developed on 859 eligible, complete-case babies in the EPIPAGE 2 cohort and validated using 10-fold cross-validation.

Similar articles

Cited by

References

    1. March of Dimes, pmNch, Save the children Who WHO | Born too Soon [Internet]. WHO; (2019). [cited 2019 March 7]. Available online at: https://www.who.int/maternal_child_adolescent/documents/born_too_soon/en/ (accessed March 7, 2019).
    1. Ancel P-Y, Goffinet F, Kuhn P, Langer B, Matis J, Hernandorena X, et al. Survival and morbidity of preterm children born at 22 through 34 weeks' gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr. (2015) 169:230–8. 10.1001/jamapediatrics.2014.3351 - DOI - PubMed
    1. Moyer LB, Goyal NK, Meinzen-Derr J, Ward LP, Rust CL, Wexelblatt SL, et al. . Factors associated with readmission in late-preterm infants: a matched case-control study. Hosp Pediatr. (2014) 4:298–304. 10.1542/hpeds.2013-0120 - DOI - PubMed
    1. Platt MJ. Outcomes in preterm infants. Public Health. (2014) 128:399–403. 10.1016/j.puhe.2014.03.010 - DOI - PubMed
    1. Underwood MA, Danielsen B, Gilbert WM. Cost, causes and rates of rehospitalization of preterm infants. J Perinatol. (2007) 27:614–9. 10.1038/sj.jp.7211801 - DOI - PubMed

LinkOut - more resources