Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan;43(1):300-328.
doi: 10.1002/hbm.25354. Epub 2021 Feb 21.

Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs

Ida E Sønderby  1   2   3 Christopher R K Ching  4 Sophia I Thomopoulos  4 Dennis van der Meer  2   5 Daqiang Sun  6   7 Julio E Villalon-Reina  4 Ingrid Agartz  8   9   10 Katrin Amunts  11   12 Celso Arango  13   14 Nicola J Armstrong  15 Rosa Ayesa-Arriola  14   16 Geor Bakker  17   18 Anne S Bassett  19   20   21 Dorret I Boomsma  22   23 Robin Bülow  24 Nancy J Butcher  21   25 Vince D Calhoun  26 Svenja Caspers  11   27 Eva W C Chow  19   21 Sven Cichon  11   28   29 Simone Ciufolini  30 Michael C Craig  31 Benedicto Crespo-Facorro  32 Adam C Cunningham  33 Anders M Dale  34   35 Paola Dazzan  36 Greig I de Zubicaray  37 Srdjan Djurovic  1   38 Joanne L Doherty  33   39 Gary Donohoe  40 Bogdan Draganski  41   42 Courtney A Durdle  43 Stefan Ehrlich  44 Beverly S Emanuel  45 Thomas Espeseth  46   47 Simon E Fisher  48   49 Tian Ge  50   51 David C Glahn  52   53 Hans J Grabe  54   55 Raquel E Gur  56   57 Boris A Gutman  58 Jan Haavik  59   60 Asta K Håberg  61   62 Laura A Hansen  63 Ryota Hashimoto  64   65 Derrek P Hibar  66 Avram J Holmes  67   68 Jouke-Jan Hottenga  22 Hilleke E Hulshoff Pol  69 Maria Jalbrzikowski  70 Emma E M Knowles  51   71 Leila Kushan  72 David E J Linden  73   74 Jingyu Liu  26   75 Astri J Lundervold  76 Sandra Martin-Brevet  41 Kenia Martínez  13   14   77 Karen A Mather  78   79 Samuel R Mathias  53   71 Donna M McDonald-McGinn  45   80   81 Allan F McRae  82 Sarah E Medland  83 Torgeir Moberget  84 Claudia Modenato  41   85 Jennifer Monereo Sánchez  73   86   87 Clara A Moreau  88 Thomas W Mühleisen  11   12   29 Tomas Paus  89   90 Zdenka Pausova  91 Carlos Prieto  92 Anjanibhargavi Ragothaman  93 Céline S Reinbold  29   94 Tiago Reis Marques  30   95 Gabriela M Repetto  96 Alexandre Reymond  97 David R Roalf  56 Borja Rodriguez-Herreros  98 James J Rucker  36 Perminder S Sachdev  78   99 James E Schmitt  100 Peter R Schofield  79   101 Ana I Silva  74   102 Hreinn Stefansson  103 Dan J Stein  104 Christian K Tamnes  2   9   105 Diana Tordesillas-Gutiérrez  14   106 Magnus O Ulfarsson  103   107 Ariana Vajdi  72 Dennis van 't Ent  22 Marianne B M van den Bree  33 Evangelos Vassos  108 Javier Vázquez-Bourgon  14   16   109 Fidel Vila-Rodriguez  110 G Bragi Walters  103   111 Wei Wen  78 Lars T Westlye  3   46   112 Katharina Wittfeld  54   55 Elaine H Zackai  45   80 Kári Stefánsson  103   111 Sebastien Jacquemont  88   113 Paul M Thompson  4 Carrie E Bearden  6   114 Ole A Andreassen  2 ENIGMA-CNV Working GroupENIGMA 22q11.2 Deletion Syndrome Working Group
Collaborators, Affiliations
Review

Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs

Ida E Sønderby et al. Hum Brain Mapp. 2022 Jan.

Abstract

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.

Keywords: brain structural imaging; copy number variant; diffusion tensor imaging; evolution; genetics-first approach; neurodevelopmental disorders; psychiatric disorders.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Copy number variants. CNV carriers may have a deletion (one copy of region D, red) or duplication (three copies of region D, blue) compared with the normal copy number (two copies of region D, black). Reciprocal CNVs are a deletion and duplication occurring at the same locus
FIGURE 2
FIGURE 2
World map of the ENIGMA‐CNV and 22q‐ENIGMA WG study sites. A full list of participating cohorts and members for ENIGMA‐CNV and 22q‐ENIGMA may be found at the respective webpages: http://enigma.ini.usc.edu/ongoing/enigma‐cnv/enigma‐cnv‐co‐authors/ and http://enigma.ini.usc.edu/ongoing/enigma‐22q‐working‐group/22qwg/. Both working groups consist of international teams of clinicians, neuroscientists, engineers, bioinformaticians, statisticians, computer scientists, and geneticists who pool their resources to conduct large‐scale neuroimaging studies of CNVs
FIGURE 3
FIGURE 3
The overall procedure for participation in ENIGMA‐CNV and 22q‐ENIGMA
FIGURE 4
FIGURE 4
The subcortical findings from ENIGMA‐CNV, 22q‐ENIGMA and selected ENIGMA psychiatric working groups. Averaged left and right subcortical volume case versus non‐carriers (NC) Cohen's d effect size estimates for the ENIGMA SCZ (van Erp et al., 2016), ADHD (Hoogman et al., 2017), ASD (van Rooij et al., 2018), 22q11DS (Ching et al., 2020), 15q11.2 CNV (van der Meer, 2019), 16p11.2 distal CNV (Sønderby et al., 2018), and the 1q21.1 distal CNV (in review) studies. 22q+Psy vs. 22q‐Psy indicates a comparison from Ching et al. (2020) where a subset of individuals with 22q11.2 deletion syndrome with a history of psychosis were compared to a matched group of individuals with 22q11.2 deletion without a history of psychosis. Significant group differences are indicated by an asterisk (*); the plot includes vertical 95% confidence intervals
FIGURE 5
FIGURE 5
Cortical findings from the ENIGMA‐CNV, 22q‐ENIGMA, and selected ENIGMA psychiatric working groups. Copy number variant (CNV) analyses: for deletion or duplication carriers vs non‐carriers for the 15q11.2 CNVs (ICV‐corrected; van der Meer et al., 2019), 1q21.1 distal CNVs (ICV‐corrected; in review) and 22q11DS (Sun et al., 2018). 22q11DS results include 22q11DS psychosis deletion (Del+Psy) vs non psychosis deletion (Del‐Psy; left hemisphere shown). Behaviorally defined disorders analyses: Results are shown from case‐control studies from ASD's mega‐analysis (left hemisphere shown; van Rooij et al., 2018), all ages in ADHD combined (children, adolescents and adults; Hoogman et al., 2017), all types of epilepsies combined (left hemisphere shown; Whelan et al., 2018), and schizophrenia (SCZ; left hemisphere shown; van Erp et al., 2018). Only significant results are shown

References

    1. Abdellaoui, A. , Ehli, E. A. , Hottenga, J. J. , Weber, Z. , Mbarek, H. , Willemsen, G. , … Boomsma, D. I. (2015). CNV concordance in 1,097 MZ twin pairs. Twin Research and Human Genetics, 18(1), 1–12. 10.1017/thg.2014.86 - DOI - PubMed
    1. Adams, H. H. , Hibar, D. P. , Chouraki, V. , Stein, J. L. , Nyquist, P. A. , Renteria, M. E. , … Thompson, P. M. (2016). Novel genetic loci underlying human intracranial volume identified through genome‐wide association. Nature Neuroscience, 19(12), 1569–1582. 10.1038/nn.4398 - DOI - PMC - PubMed
    1. Adhikari, B. M. , Jahanshad, N. , Shukla, D. , Glahn, D. C. , Blangero, J. , Fox, P. T. , … Kochunov, P. (2018). Comparison of heritability estimates on resting state fMRI connectivity phenotypes using the ENIGMA analysis pipeline. Human Brain Mapping, 39(12), 4893–4902. 10.1002/hbm.24331 - DOI - PMC - PubMed
    1. Alexander‐Bloch, A. , Raznahan, A. , Bullmore, E. , & Giedd, J. (2013). The convergence of maturational change and structural covariance in human cortical networks. The Journal of Neuroscience, 33(7), 2889–2899. 10.1523/JNEUROSCI.3554-12.2013 - DOI - PMC - PubMed
    1. Alfaro‐Almagro, F. , Jenkinson, M. , Bangerter, N. K. , Andersson, J. L. , Griffanti, L. , Douaud, G. , … Vallee, E. (2018). Image processing and quality control for the first 10,000 brain imaging datasets from UKbiobank. NeuroImage, 166, 400–424. - PMC - PubMed

Publication types

MeSH terms

Grants and funding