Environment-Responsive Lipid/siRNA Nanoparticles for Cancer Therapy
- PMID: 33615743
- DOI: 10.1002/adhm.202001294
Environment-Responsive Lipid/siRNA Nanoparticles for Cancer Therapy
Abstract
RNA interference (RNAi) is a promising technology to regulate oncogenes for treating cancer. The primary limitation of siRNA for clinical application is the safe and efficacious delivery of therapeutic siRNA into target cells. Lipid-based delivery systems are developed to protect siRNA during the delivery process and to facilitate intracellular uptake. There is a significant progress in lipid nanoparticle systems that utilize cationic and protonatable amino lipid systems to deliver siRNA to tumors. Among these lipids, environment-responsive lipids are a class of novel lipid delivery systems that are capable of responding to the environment changes during the delivery process and demonstrate great promise for clinical translation for siRNA therapeutics. Protonatable or ionizable amino lipids and switchable lipids as well as pH-sensitive multifunctional amino lipids are the presentative environment-responsive lipids for siRNA delivery. These lipids are able to respond to environmental changes during the delivery process to facilitate efficient cytosolic siRNA delivery. Environment-responsive lipid/siRNA nanoparticles (ERLNP) are developed with the lipids and are tested for efficient delivery of therapeutic siRNA into the cytoplasm of cancer cells to silence target genes for cancer treatment in preclinical development. This review summarizes the recent developments in environment-response lipids and nanoparticles for siRNA delivery in cancer therapy.
Keywords: cancer therapy; environment-responsive lipids; nanoparticles; siRNA; siRNA delivery.
© 2020 Wiley-VCH GmbH.
Similar articles
-
Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery.Bioconjug Chem. 2016 Jan 20;27(1):19-35. doi: 10.1021/acs.bioconjchem.5b00538. Epub 2015 Dec 17. Bioconjug Chem. 2016. PMID: 26629982 Review.
-
Lipid-Based Liquid Crystalline Nanoparticles Facilitate Cytosolic Delivery of siRNA via Structural Transformation.Nano Lett. 2018 Apr 11;18(4):2411-2419. doi: 10.1021/acs.nanolett.7b05430. Epub 2018 Mar 23. Nano Lett. 2018. PMID: 29561622
-
Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.Acc Chem Res. 2019 Sep 17;52(9):2435-2444. doi: 10.1021/acs.accounts.9b00368. Epub 2019 Aug 9. Acc Chem Res. 2019. PMID: 31397996 Review.
-
Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release.Mol Pharm. 2014 Aug 4;11(8):2734-44. doi: 10.1021/mp400787s. Epub 2014 Jul 14. Mol Pharm. 2014. PMID: 25020033 Free PMC article.
-
Targeted Dual pH-Sensitive Lipid ECO/siRNA Self-Assembly Nanoparticles Facilitate In Vivo Cytosolic sieIF4E Delivery and Overcome Paclitaxel Resistance in Breast Cancer Therapy.Adv Healthc Mater. 2016 Nov;5(22):2882-2895. doi: 10.1002/adhm.201600677. Epub 2016 Oct 10. Adv Healthc Mater. 2016. PMID: 27723260 Free PMC article.
Cited by
-
Recent advances in redox-responsive nanoparticles for combined cancer therapy.Nanoscale Adv. 2022 Jul 28;4(17):3504-3516. doi: 10.1039/d2na00222a. eCollection 2022 Aug 23. Nanoscale Adv. 2022. PMID: 36134355 Free PMC article. Review.
-
Emerging role of exosomes in cancer progression and tumor microenvironment remodeling.J Hematol Oncol. 2022 Jun 28;15(1):83. doi: 10.1186/s13045-022-01305-4. J Hematol Oncol. 2022. PMID: 35765040 Free PMC article. Review.
-
Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery.Pharm Res. 2023 Jan;40(1):27-46. doi: 10.1007/s11095-022-03460-2. Epub 2023 Jan 4. Pharm Res. 2023. PMID: 36600047 Free PMC article. Review.
-
Regulating Oncogenic LncRNA DANCR with Targeted ECO/siRNA Nanoparticles for Non-Small Cell Lung Cancer Therapy.ACS Omega. 2022 Jun 17;7(26):22743-22753. doi: 10.1021/acsomega.2c02260. eCollection 2022 Jul 5. ACS Omega. 2022. PMID: 35811871 Free PMC article.
-
Development of amino acid-modified biodegradable lipid nanoparticles for siRNA delivery.Acta Biomater. 2022 Dec;154:374-384. doi: 10.1016/j.actbio.2022.09.065. Epub 2022 Sep 30. Acta Biomater. 2022. PMID: 36191773 Free PMC article.
References
-
- A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, Nature 1998, 391, 806.
-
- B. Hu, L. Zhong, Y. Weng, L. Peng, Y. Huang, Y. Zhao, X. J. Liang, Signal Transduction Targeted Ther. 2020, 5, 101.
-
- G. Mahmoodi Chalbatani, H. Dana, E. Gharagouzloo, S. Grijalvo, R. Eritja, C. D. Logsdon, F. Memari, S. R. Miri, M. R. Rad, V. Marmari, Int. J. Nanomed. 2019, 14, 3111.
-
- A. Fjose, S. Ellingsen, A. Wargelius, H. C. Seo, Biotechnol. Annu. Rev. 2001, 7, 31.
-
- U. Fuchs, C. Damm-Welk, A. Borkhardt, Curr. Mol. Med. 2004, 4, 507.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical