Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar;25(2):173-180.
doi: 10.1007/s00792-021-01219-y. Epub 2021 Feb 23.

Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration

Affiliations

Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration

Dimitry Y Sorokin et al. Extremophiles. 2021 Mar.

Abstract

Dimethylsulfoxide (DMSO) has long been known to support anaerobic respiration in a few species of basically aerobic extremely halophilic euryarchaea living in hypersaline lakes. Recently, it has also been shown to be utilized as an additional electron acceptor in basically anaerobic sulfur-reducing haloarchaea. Here we investigated whether haloarchaea would be capable of anaerobic respiration with other two sulfoxides, methionine sulfoxide (MSO) and tetramethylene sulfoxide (TMSO). For this, anaerobic enrichment cultures were inoculated with sediments from hypersaline salt and soda lakes in southwestern Siberia and southern Russia. Positive enrichments were obtained for both MSO and TMSO with yeast extract but not with formate or acetate as the electron donor. Two pure cultures obtained from salt lakes, either with MSO or TMSO, were obligate anaerobes closely related to sulfur-reducing Halanaeroarchaeum sulfurireducens, although the type strain of this genus was unable to utilize any sulfoxides. Two pure cultures isolated from soda lakes were facultatively anaerobic alkaliphilic haloarchaea using O2, sulfur and sulfoxides as the electron acceptors. One isolate was identical to the previously described sulfur-reducing Natrarchaeobaculum sulfurireducens, while another one, enriched at lower alkalinity, is forming a new species in the genus Halobiforma. Since all isolates enriched with either MSO or TMSO were able to respire all three sulfoxides including DMSO and the corresponding activities were cross-induced, it suggest that a single enzyme of the DMSO-reductase family with a broad substrate specificity is responsible for various sulfoxide-dependent respiration in haloarchaea.

Keywords: Anaerobic respiration; Haloarchaea; Hypersaline lakes; Methionine sulfoxide; Tetramethylene sulfoxide.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Andrei A-S, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9 - DOI
    1. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220 - DOI
    1. Bilous PT, Weiner JH (1985) Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101. J Bacteriol 162:1151–1155 - DOI
    1. Boschi-Muller S, Branlant G (2014) Methionine sulfoxide reductase: Chemistry, substrate binding, recycling process and oxidase activity. Bioorg Chem 57:222–230 - DOI
    1. Ezraty B, Bos J, Barras F, Aussel L (2005) Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. J Bacteriol 187:231–237 - DOI

LinkOut - more resources