Small-sized extracellular vesicles (EVs) derived from acute myeloid leukemia bone marrow mesenchymal stem cells transfer miR-26a-5p to promote acute myeloid leukemia cell proliferation, migration, and invasion
- PMID: 33620671
- DOI: 10.1007/s13577-021-00501-7
Small-sized extracellular vesicles (EVs) derived from acute myeloid leukemia bone marrow mesenchymal stem cells transfer miR-26a-5p to promote acute myeloid leukemia cell proliferation, migration, and invasion
Abstract
Bone marrow mesenchymal stem cells (BMSCs) in acute myeloid leukemia (AML) microenvironment undergo modification that includes expression of contents in the small-sized extracellular vesicles (EVs) they secrete. This study aims to investigate whether small-sized EVs from BMSCs of AML patients regulate AML progression by modifying the expression of miR-26a-5p. Small-sized EVs from BMSCs of AML patients (AML-BMSC-EVs) or healthy controls (HC-BMSC-EVs) were isolated by ultra-centrifugation and administered to AML cells (OCI/AML-2 and THP-1). Cell proliferation, migration, and invasion were evaluated by CCK-8 assay, Transwell migration and invasion assays, respectively. Compared with HC-BMSC-EVs, AML-BMSC-EVs contained higher expression of miR-26a-5p and promoted AML cell proliferation, migration, and invasion. Inhibition of miR-26a-5p expression in AML-BMSC-EVs could abrogate the promoting effects of AML-BMSC-EVs on AML cell proliferation, migration, and invasion. Furthermore, GSK3β was a direct target of miR-26a-5p. Moreover, AML-BMSC-EVs inhibited GSK3β expression and activated Wnt/β-catenin signaling in AML cells. Additionally, GSK3β overexpression in THP-1 cells counteracted the promoting effects of AML-BMSCs-EVs on THP-1 cell proliferation, migration, and invasion. AML-BMSC-EVs promoted AML progression by transferring miR-26a-5p to AML cells and subsequently activating the Wnt/β-catenin pathway.
Keywords: Acute myeloid leukemia; GSK3β; Mesenchymal stem cells; Small-sized EVs; miR-26a-5p.
Similar articles
-
Mechanism of bone-marrow mesenchymal stem cell-derived exosomes mediating microRNA-139-5p to regulate β-catenin in the modulation of proliferation and apoptosis of acute myeloid leukemia cells.Hematology. 2024 Dec;29(1):2428482. doi: 10.1080/16078454.2024.2428482. Epub 2024 Nov 21. Hematology. 2024. PMID: 39570105
-
Hypoxic bone marrow mesenchymal cell-extracellular vesicles containing miR-328-3p promote lung cancer progression via the NF2-mediated Hippo axis.J Cell Mol Med. 2021 Jan;25(1):96-109. doi: 10.1111/jcmm.15865. Epub 2020 Nov 21. J Cell Mol Med. 2021. PMID: 33219752 Free PMC article.
-
Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leukemia by targeting OSBPL11.J Nanobiotechnology. 2022 Jan 10;20(1):29. doi: 10.1186/s12951-021-01206-7. J Nanobiotechnology. 2022. Retraction in: J Nanobiotechnology. 2025 Jan 18;23(1):24. doi: 10.1186/s12951-025-03124-4. PMID: 35012554 Free PMC article. Retracted.
-
Role of Acute Myeloid Leukemia (AML)-Derived exosomes in tumor progression and survival.Biomed Pharmacother. 2022 Jun;150:113009. doi: 10.1016/j.biopha.2022.113009. Epub 2022 Apr 26. Biomed Pharmacother. 2022. PMID: 35486974 Review.
-
Extracellular vesicles in acute myeloid leukemia: The role in disease pathogenesis, potential biomarker, and application in clinical settings.Crit Rev Oncol Hematol. 2025 Jul;211:104743. doi: 10.1016/j.critrevonc.2025.104743. Epub 2025 Apr 23. Crit Rev Oncol Hematol. 2025. PMID: 40280220 Review.
Cited by
-
Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer.Front Bioeng Biotechnol. 2022 Sep 26;10:956563. doi: 10.3389/fbioe.2022.956563. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36225602 Free PMC article. Review.
-
Scalable Enrichment of Immunomodulatory Human Acute Myeloid Leukemia Cell Line-Derived Extracellular Vesicles.Cells. 2021 Nov 26;10(12):3321. doi: 10.3390/cells10123321. Cells. 2021. PMID: 34943829 Free PMC article.
-
Extracellular Vesicles in Acute Leukemia: A Mesmerizing Journey With a Focus on Transferred microRNAs.Front Cell Dev Biol. 2021 Oct 6;9:766371. doi: 10.3389/fcell.2021.766371. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 34692712 Free PMC article. Review.
-
Extracellular Vesicles in Haematological Disorders: A Friend or a Foe?Int J Mol Sci. 2022 Sep 4;23(17):10118. doi: 10.3390/ijms231710118. Int J Mol Sci. 2022. PMID: 36077514 Free PMC article. Review.
-
Recent advancements in biomarkers, therapeutics, and associated challenges in acute myeloid leukemia.Ann Hematol. 2024 Nov;103(11):4375-4400. doi: 10.1007/s00277-024-05963-x. Epub 2024 Aug 29. Ann Hematol. 2024. PMID: 39198271 Review.
References
-
- De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. https://doi.org/10.1038/bcj.2016.50 . - DOI - PubMed - PMC
-
- Ferrara F, Palmieri S, Mele G. Prognostic factors and therapeutic options for relapsed or refractory acute myeloid leukemia. Haematologica. 2004;89(8):998–1008. - PubMed
-
- Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–33. https://doi.org/10.1016/j.stem.2018.05.004 . - DOI - PubMed - PMC
-
- Fajardo-Orduña GR, Mayani H, Montesinos JJ. Hematopoietic support capacity of mesenchymal stem cells: biology and clinical potential. Arch Med Res. 2015;46(8):589–96. https://doi.org/10.1016/j.arcmed.2015.10.001 . - DOI - PubMed
-
- Low JH, Ramdas P, Radhakrishnan AK. Modulatory effects of mesenchymal stem cells on leucocytes and leukemic cells: a double-edged sword? Blood Cells Mol Dis. 2015;55(4):351–7. https://doi.org/10.1016/j.bcmd.2015.07.017 . - DOI - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical