Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr;36(2):229-243.
doi: 10.1007/s10557-021-07159-1. Epub 2021 Feb 23.

The Protective Role of Bmal1-Regulated Autophagy Mediated by HDAC3/SIRT1 Pathway in Myocardial Ischemia/Reperfusion Injury of Diabetic Rats

Affiliations

The Protective Role of Bmal1-Regulated Autophagy Mediated by HDAC3/SIRT1 Pathway in Myocardial Ischemia/Reperfusion Injury of Diabetic Rats

Zhen Qiu et al. Cardiovasc Drugs Ther. 2022 Apr.

Abstract

Purpose: Histone deacetylase 3 (HDAC3) and silent information regulator 1 (SIRT1) are histone deacetylases that regulate important metabolic pathways and play important roles in diabetes and myocardial ischemia/reperfusion (IR) injury. In this study, we explored the protective mechanism of Bmal1-regulated autophagy mediated by the HDAC3/SIRT1 pathway in myocardial IR injury of diabetic rats.

Methods and results: Type 1 diabetes was established by administering an intraperitoneal injection of streptozotocin. After 8 weeks, the left anterior descending coronary artery was ligated for 30 min and reperfused for 120 min to establish a myocardial IR injury model in diabetic rats. H9c2 cardiomyocytes were exposed to high glucose concentration (30 mM) and hypoxia/reoxygenation (H/R) stimulation in vitro. The myocardial infarct size and levels of serum cTn-I, CK-MB, and LDH in diabetic rats subjected to myocardial IR injury were significantly higher. Upregulated HDAC3 and downregulated SIRT1 expression were observed in diabetic and IR hearts, along with a lower Bmal1 level. Autophagy was rapidly increased in the hearts of diabetic or non-diabetic rats in the IR group compared with the sham group, but significantly attenuated in the hearts of diabetic rats compared with the hearts of non-diabetic rats after IR insult. Consistent with decreased autophagy, we observed increased HDAC3 expression and decreased SIRT1 and Bmal1 levels in the myocardial tissue of diabetic rats after IR. Inhibition of HDAC3 by the inhibitor RGFP966 and activation of SIRT1 by the agonist SRT1720 could significantly attenuate myocardial IR injury in diabetic rats by restoring Bmal1-regulated autophagy.

Conclusion: Based on these findings, the disordered HDAC3/SIRT1 circuit (upregulated HDAC3 and downregulated SIRT1 levels) plays an important role in aggravating myocardial IR injury in diabetic rats by downregulating Bmal1-mediated autophagy. Treatments targeting HDAC3/SIRT1 to activate the autophagy may represent a novel strategy to alleviate myocardial IR injury in diabetes.

Keywords: Autophagy; Bmal1; HDAC3; Myocardial ischemia reperfusion injury; SIRT1.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Fares MA. Introduction: Challenges and advances in cardiovascular disease. Cleve Clin J Med. 2017;84(12 Suppl 3):11. - PubMed
    1. Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol basis Dis. 1866;2020(7):165768.
    1. Godoy LC, Lawler PR, Farkouh ME, Hersen B, Nicolau JC, Rao V. Urgent revascularization strategies in patients with diabetes mellitus and acute coronary syndrome. Can J Cardiol. 2019;35(8):993–1001. - PubMed
    1. Xing W, Tan Y, Li K, Tian P, Tian F, Zhang H. Upregulated hepatokine fetuin B aggravates myocardial ischemia/reperfusion injury through inhibiting insulin signaling in diabetic mice. J Mol Cell Cardiol. 2020;S0022-2828(20):30057–2.
    1. Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, et al. Effect of hyperglycaemia and diabetes on acute myocardial ischemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol. 2020;27:5312–35.

Publication types

LinkOut - more resources