Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2021 Mar;27(3):823-834.
doi: 10.3201/eid2703.204508.

Severe Acute Respiratory Syndrome Coronavirus 2 Seropositivity among Healthcare Personnel in Hospitals and Nursing Homes, Rhode Island, USA, July-August 2020

Comparative Study

Severe Acute Respiratory Syndrome Coronavirus 2 Seropositivity among Healthcare Personnel in Hospitals and Nursing Homes, Rhode Island, USA, July-August 2020

Lara J Akinbami et al. Emerg Infect Dis. 2021 Mar.

Abstract

Healthcare personnel are recognized to be at higher risk for infection with severe acute respiratory syndrome coronavirus 2. We conducted a serologic survey in 15 hospitals and 56 nursing homes across Rhode Island, USA, during July 17-August 28, 2020. Overall seropositivity among 9,863 healthcare personnel was 4.6% (95% CI 4.2%-5.0%) but varied 4-fold between hospital personnel (3.1%, 95% CI 2.7%-3.5%) and nursing home personnel (13.1%, 95% CI 11.5%-14.9%). Within nursing homes, prevalence was highest among personnel working in coronavirus disease units (24.1%; 95% CI 20.6%-27.8%). Adjusted analysis showed that in hospitals, nurses and receptionists/medical assistants had a higher likelihood of seropositivity than physicians. In nursing homes, nursing assistants and social workers/case managers had higher likelihoods of seropositivity than occupational/physical/speech therapists. Nursing home personnel in all occupations had elevated seropositivity compared with hospital counterparts. Additional mitigation strategies are needed to protect nursing home personnel from infection, regardless of occupation.

Keywords: Rhode Island; SARS; SARS-CoV-2; United States; coronavirus; coronavirus disease; healthcare personnel; hospital; long term care facility; nursing home; respiratory infections; seroprevalence; severe acute respiratory syndrome coronavirus 2; viruses; zoonoses.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Seropositivity for severe acute respiratory syndrome coronavirus 2 among hospital and nursing home personnel, by facility, Rhode Island, USA, July–August 2020. Map based on average of longitude and average of latitude. Marker size is proportional to facility-level seroprevalence. Facilities with participant sample size <10 are not shown.
Figure 2
Figure 2
Seropositivity for severe acute respiratory syndrome coronavirus 2 among hospital and nursing home personnel, by selected workplace and occupation, Rhode Island, USA, July–August 2020. Error bars indicate 95% CIs. Workplace/occupation categories are not mutually exclusive: 27.3% of participants indicated >1 workplace. Occupations not included in the figure had 0% seroprevalence, sample size below n = 20, or absolute CI width >0.30 (unreliable estimate). Other healthcare category also not included. COVID-19, coronavirus disease.
Figure 3
Figure 3
Seropositivity for severe acute respiratory syndrome coronavirus 2 among hospital and nursing home personnel, by having/not having specific PPE, Rhode Island, USA, July–August 2020. Excludes participants who reported no PPE use (19.6% of those in hospital settings, seropositivity 3.4%; 12.4% of those in nursing home settings, seropositivity 12.4%). Asterisk (*) indicates statistically significant difference (p<0.05 by χ2 test). PPE, personal protective equipment.
Figure 4
Figure 4
Adjusted odds ratios and 95% CIs for seropositivity, Rhode Island, USA, July–August 2020. The adjusted models were estimated using generalized estimating equations including all variables shown. Error bars indicate 95% CIs; black boxes denote adjusted odds ratios for which the 95% CI excludes 1.0. Workplace was represented by non–mutually exclusive dummy variables entered simultaneously into the model; the referent group for each workplace is not working in that specific workplace. Participants in workplaces with sample size <30 or with 0% seropositivity were included in the model but the workplace was not entered into the model. *For the hospital model, physicians were the referent occupation group. For the nursing home model, occupational/physical/speech therapists were the referent occupation group. Ref, referent; NH, non-Hispanic; PPE, personal protective equipment.

References

    1. Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo C-G, Ma W, et al. ; COronavirus Pandemic Epidemiology Consortium. Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. Lancet Public Health. 2020;5:e475–83. 10.1016/S2468-2667(20)30164-X - DOI - PMC - PubMed
    1. Hughes MM, Groenewold MR, Lessem SE, Xu K, Ussery EN, Wiegand RE, et al. Update: characteristics of health care personnel with COVID-19—United States, February 12–July 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1364–8. 10.15585/mmwr.mm6938a3 - DOI - PMC - PubMed
    1. Chou R, Dana T, Buckley DI, Selph S, Fu R, Totten AM. Epidemiology of and risk factors for coronavirus infection in health care workers: a living rapid review. Ann Intern Med. 2020;173:120–36. 10.7326/M20-1632 - DOI - PMC - PubMed
    1. Rebmann T, Vassallo A, Holdsworth JE. Availability of personal protective equipment and infection prevention supplies during the first month of the COVID-19 pandemic: A national study by the APIC COVID-19 task force. Am J Infect Control. 2020;S0196-6553(20)30814-2. 10.1016/j.ajic.2020.08.029 - DOI - PMC - PubMed
    1. Grant JJ, Wilmore SMS, McCann NS, Donnelly O, Lai RWL, Kinsella MJ, et al. Seroprevalence of SARS-CoV-2 antibodies in healthcare workers at a London NHS Trust. Infect Control Hosp Epidemiol. 2020. 10.1017/ice.2020.402 - DOI - PMC - PubMed

Publication types

MeSH terms