Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 1;143(6):061015.
doi: 10.1115/1.4050283.

Impact-Induced Cortical Strain Concentrations at the Sulcal Base and Its Implications for Mild Traumatic Brain Injury

Affiliations

Impact-Induced Cortical Strain Concentrations at the Sulcal Base and Its Implications for Mild Traumatic Brain Injury

Ashley Mazurkiewicz et al. J Biomech Eng. .

Abstract

This study investigated impact-induced strain fields within brain tissue surrogates having different cortical gyrification. Two elastomeric surrogates, one representative of a lissencephalic brain and the other of a gyrencephalic brain, were drop impacted in unison at four different heights and in two different orientations. Each surrogate contained a radiopaque speckle pattern that was used to calculate strain fields. Two different approaches, digital image correlation (DIC) and a particle tracking method, enabled comparisons of full-field and localized strain responses. The DIC results demonstrated increased localized deviations from the mean strain field in the surrogate with a gyrified cortex. Particle tracking algorithms, defining four-node quadrilateral elements, were used to investigate the differences in the strain response of three regions: the base of a sulcus, the adjacent gyrus, and the internal capsule of the surrogates. The results demonstrated that the strains in the cortex were concentrated at the sulcal base. This mechanical mechanism of increased strain is consistent with neurodegenerative markers observed in postmortem analyses, suggesting a potential mechanism of local damage due to strain amplification at the sulcal bases in gyrencephalic brains. This strain amplification mechanism may be responsible for cumulative neurodegeneration from repeated subconcussive impacts. The observed results suggest that lissencephalic animal models, such as rodents, would not have the same modes of injury present in a gyrencephalic brain, such as that of a human. As such, a shift toward representative mild traumatic brain injury animal models having gyrencephalic cortical structures should be strongly considered.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources