ASAS-NANP SYMPOSIUM: prospects for interactive and dynamic graphics in the era of data-rich animal science1
- PMID: 33626150
- PMCID: PMC7904041
- DOI: 10.1093/jas/skaa402
ASAS-NANP SYMPOSIUM: prospects for interactive and dynamic graphics in the era of data-rich animal science1
Abstract
Statistical graphics, and data visualization, play an essential but under-utilized, role for data analysis in animal science, and also to visually illustrate the concepts, ideas, or outputs of research and in curricula. The recent rise in web technologies and ubiquitous availability of web browsers enables easier sharing of interactive and dynamic graphics. Interactivity and dynamic feedback enhance human-computer interaction and data exploration. Web applications such as decision support systems coupled with multimedia tools synergize with interactive and dynamic graphics. However, the importance of graphics for effectively communicating data, understanding data uncertainty, and the state of the field of interactive and dynamic graphics is underappreciated in animal science. To address this gap, we describe the current state of graphical methodology and technology that might be more broadly adopted. This includes an explanation of a conceptual framework for effective graphics construction. The ideas and technology are illustrated using publicly available animal datasets. We foresee that many new types of big and complex data being generated in precision livestock farming create exciting opportunities for applying interactive and dynamic graphics to improve data analysis and make data-supported decisions.
Keywords: dynamic graphic; human–computer interaction; image; interactive graphic; statistical graphic; visualization.
© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science.
Figures











Similar articles
-
ASAS-NANP symposium: mathematical modeling in animal nutrition-Making sense of big data and machine learning: how open-source code can advance training of animal scientists.J Anim Sci. 2023 Jan 3;101:skad317. doi: 10.1093/jas/skad317. J Anim Sci. 2023. PMID: 37997926 Free PMC article.
-
ASAS-NANP Symposium: Mathematical Modeling in Animal Nutrition: Opportunities and challenges of confined and extensive precision livestock production.J Anim Sci. 2022 Jun 1;100(6):skac160. doi: 10.1093/jas/skac160. J Anim Sci. 2022. PMID: 35511692 Free PMC article. Review.
-
Effects of game-like interactive graphics on risk perceptions and decisions.Med Decis Making. 2011 Jan-Feb;31(1):130-42. doi: 10.1177/0272989X10364847. Epub 2010 Apr 14. Med Decis Making. 2011. PMID: 20393103 Free PMC article.
-
Data visualization, bar naked: A free tool for creating interactive graphics.J Biol Chem. 2017 Dec 15;292(50):20592-20598. doi: 10.1074/jbc.RA117.000147. Epub 2017 Oct 3. J Biol Chem. 2017. PMID: 28974579 Free PMC article.
-
ASAS-NANP SYMPOSIUM: Review of systems thinking concepts and their potential value in animal science research.J Anim Sci. 2021 Feb 1;99(2):skab021. doi: 10.1093/jas/skab021. J Anim Sci. 2021. PMID: 33626146 Free PMC article. Review.
Cited by
-
ASAS-NANP SYMPOSIUM: Mathematical Modeling in Animal Nutrition: Training the Future Generation in Data and Predictive Analytics for Sustainable Development. A Summary of the 2021 and 2022 Symposia.J Anim Sci. 2023 Jan 3;101:skad318. doi: 10.1093/jas/skad318. J Anim Sci. 2023. PMID: 37997923 Free PMC article. No abstract available.
-
Automated acquisition of top-view dairy cow depth image data using an RGB-D sensor camera.Transl Anim Sci. 2022 Dec 13;6(4):txac163. doi: 10.1093/tas/txac163. eCollection 2022 Oct. Transl Anim Sci. 2022. PMID: 36601061 Free PMC article.
-
ASAS-NANP SYMPOSIUM: Mathematical modeling in animal nutrition: training the future generation in data and predictive analytics for sustainable development. A Summary.J Anim Sci. 2021 Feb 1;99(2):skab023. doi: 10.1093/jas/skab023. J Anim Sci. 2021. PMID: 33626148 Free PMC article. No abstract available.
-
AnimalMotionViz: An interactive software tool for tracking and visualizing animal motion patterns using computer vision.JDS Commun. 2025 Mar 3;6(3):416-421. doi: 10.3168/jdsc.2024-0706. eCollection 2025 May. JDS Commun. 2025. PMID: 40458158 Free PMC article.
-
DairyCoPilot-Automated data compilation and analysis tools for DairyComp data assets.PLoS One. 2024 Apr 18;19(4):e0297827. doi: 10.1371/journal.pone.0297827. eCollection 2024. PLoS One. 2024. PMID: 38635665 Free PMC article.
References
-
- Agnihotri, A., and N. Batra. . 2020. Exploring Bayesian optimization. Distill 5(5):e26. doi:10.23915/distill.00026. - DOI
-
- Allaire, J. J., and F. Chollet. . 2020. Keras: R interface to ’Keras’. https://CRAN.R-project.org/package=keras.
-
- Baker, R. L., S. Nagda, S. L. Rodriguez-Zas, B. R. Southey, J. O. Audho, E. O. Aduda, and W. Thorpe. . 2003. Resistance and resilience to gastro-intestinal nematode parasites and relationships with productivity of Red maasai, dorper and red maasai x dorper crossbred lambs in the sub-humid tropics. Anim. Sci. 76(1):119–136. doi:10.1017/S1357729800053388. - DOI
-
- Bates, D., M. Mächler, B. Bolker, and S. Walker. . 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1):1–48. 10.18637/jss.v067.i01 - DOI
-
- BBC Visual and Data Journalism . 2019. How the BBC visual and data journalism team works with graphics in R. https://medium.com/bbc-visual-and-data-journalism/how-the-bbc-visual-and....
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous