Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 24:372:n415.
doi: 10.1136/bmj.n415.

Excess mortality in Wuhan city and other parts of China during the three months of the covid-19 outbreak: findings from nationwide mortality registries

Affiliations

Excess mortality in Wuhan city and other parts of China during the three months of the covid-19 outbreak: findings from nationwide mortality registries

Jiangmei Liu et al. BMJ. .

Abstract

Objective: To assess excess all cause and cause specific mortality during the three months (1 January to 31 March 2020) of the coronavirus disease 2019 (covid-19) outbreak in Wuhan city and other parts of China.

Design: Nationwide mortality registries.

Setting: 605 urban districts and rural counties in China's nationally representative Disease Surveillance Point (DSP) system.

Participants: More than 300 million people of all ages.

Main outcome measures: Observed overall and weekly mortality rates from all cause and cause specific diseases for three months (1 January to 31 March 2020) of the covid-19 outbreak compared with the predicted (or mean rates for 2015-19) in different areas to yield rate ratio.

Results: The DSP system recorded 580 819 deaths from January to March 2020. In Wuhan DSP districts (n=3), the observed total mortality rate was 56% (rate ratio 1.56, 95% confidence interval 1.33 to 1.87) higher than the predicted rate (1147 v 735 per 100 000), chiefly as a result of an eightfold increase in deaths from pneumonia (n=1682; 275 v 33 per 100 000; 8.32, 5.19 to 17.02), mainly covid-19 related, but a more modest increase in deaths from certain other diseases, including cardiovascular disease (n=2347; 408 v 316 per 100 000; 1.29, 1.05 to 1.65) and diabetes (n=262; 46 v 25 per 100 000; 1.83, 1.08 to 4.37). In Wuhan city (n=13 districts), 5954 additional (4573 pneumonia) deaths occurred in 2020 compared with 2019, with excess risks greater in central than in suburban districts (50% v 15%). In other parts of Hubei province (n=19 DSP areas), the observed mortality rates from pneumonia and chronic respiratory diseases were non-significantly 28% and 23% lower than the predicted rates, despite excess deaths from covid-19 related pneumonia. Outside Hubei (n=583 DSP areas), the observed total mortality rate was non-significantly lower than the predicted rate (675 v 715 per 100 000), with significantly lower death rates from pneumonia (0.53, 0.46 to 0.63), chronic respiratory diseases (0.82, 0.71 to 0.96), and road traffic incidents (0.77, 0.68 to 0.88).

Conclusions: Except in Wuhan, no increase in overall mortality was found during the three months of the covid-19 outbreak in other parts of China. The lower death rates from certain non-covid-19 related diseases might be attributable to the associated behaviour changes during lockdown.

PubMed Disclaimer

Conflict of interest statement

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: funding for the project through a grant (No 82073675) from the National Natural Science Foundation of China; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Figures

Fig 1
Fig 1
Trends in weekly observed (dashed orange lines) versus predicted (blue solid lines) mortality rates for selected major diseases between 1 January and 31 March 2020 in China across different Disease Surveillance Point areas. First vertical dotted line indicates the time when lockdown was implemented in Wuhan. Second vertical dotted line indicates when temporary makeshift hospitals were closed in Wuhan that provided central quarantines for all people who tested positive for severe acute respiratory coronavirus 2 during the coronavirus disease 2019 outbreak. For different diseases, the ranges of mortality rates vary in y axis. The shaded areas indicate 95% confidence intervals for predicted mortality rates. COPD=chronic obstructive pulmonary disease
Fig 2
Fig 2
Age specific trends in weekly all cause, pneumonia, and other disease mortality rates during 1 January and 31 March 2020 compared with 2015-19 in China across different Disease Surveillance Point (DSP) areas. Dashed orange lines indicate observed mortality rates in 2020 and blue solid lines indicate mean mortality rates in 2015-19. For different diseases, the ranges of mortality rates in the y axis differ between Wuhan DSP areas and elsewhere
Fig 3
Fig 3
Trends in weekly hospital and non-hospital mortality rates from all causes, pneumonia, and other diseases during 1 January and 31 March 2020 compared with 2019 across different districts of Wuhan city, China. Dashed orange lines indicate observed mortality rates in 2020 and blue solid lines indicate observed mortality rates in 2019

References

    1. Zhu N, Zhang D, Wang W, et al. China Novel Coronavirus Investigating and Research Team A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382:727-33. 10.1056/NEJMoa2001017 - DOI - PMC - PubMed
    1. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 2020;382:1199-207. 10.1056/NEJMoa2001316 - DOI - PMC - PubMed
    1. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020;20:669-77. 10.1016/S1473-3099(20)30243-7 - DOI - PMC - PubMed
    1. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team [The epidemiological characteristics of an outbreak of 2019 novel coronavirus iseases (COVID-19) in China.] China CDC Weekly 2020;2(8):113-22 10.46234/ccdcw2020.032. - DOI - PMC - PubMed
    1. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A Novel Coronavirus Emerging in China - Key Questions for Impact Assessment. N Engl J Med 2020;382:692-4. 10.1056/NEJMp2000929 - DOI - PubMed