Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2021 Jul 7;117(8):1803-1805.
doi: 10.1093/cvr/cvab062.

Illuminating Kir channel function in Anderson-Tawil syndrome

Affiliations
Comment

Illuminating Kir channel function in Anderson-Tawil syndrome

Shuai Guo et al. Cardiovasc Res. .
No abstract available

PubMed Disclaimer

Figures

Figure 1
Figure 1
Basic Kir channel structure and luciferase complementation assays. (A) Primary structure of a Kir subunit. Each subunit is composed of two transmembrane domains (grey), a pore-forming loop (purple), and cytosolic N- and C-termini (green and blue, respectively). Orange circles demark PIP2 binding sites. (B) Left: 3D crystallographic model of the CD-I of a Kir2.1 channel (upper view). Right: predicted CD-I salt bridges between two adjacent Kir2.1 subunits (yellow dashed lines). Bridges form between two glutamate (Glu) residues in the C-terminal domain and a lysine (Lys) and arginine (Arg) residue in the N-terminal domain. (C) Intracellular versions of the luciferase fragment complementation assay. C-termini of wt Kir2.1, E293K Kir2.1, and KvLQT1 subunits were fused to complementary luciferase fragments (labelled Sm and Lg). Luminescence develops when complementary luciferase domains form a catalytically active enzyme. (D) Extracellular (‘snorkel’) versions of the luciferase complementation assay.

Comment on

Similar articles

References

    1. Mazzanti A, Guz D, Trancuccio A, Pagan E, Kukavica D, Chargeishvili T, Olivetti N, Biernacka EK, Sacilotto L, Sarquella-Brugada G, Campuzano O, Nof E, Anastasakis A, Sansone VA, Jimenez-Jaimez J, Cruz F, Sánchez-Quiñones J, Hernandez-Afonso J, Fuentes ME, Średniawa B, Garoufi A, Andršová I, Izquierdo M, Marinov R, Danon A, Expósito-García V, Garcia-Fernandez A, Muñoz-Esparza C, Ortíz M, Zienciuk-Krajka A, Tavazzani E, Monteforte N, Bloise R, Marino M, Memmi M, Napolitano C, Zorio E, Monserrat L, Bagnardi V, Priori SG.. Natural history and risk stratification in Andersen-Tawil syndrome type 1. J Am Coll Cardiol 2020;75:1772–1784. - PubMed
    1. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y.. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010;90:291–366. - PubMed
    1. Borschel WF, Wang S, Lee S, Nichols CG.. Control of Kir channel gating by cytoplasmic domain interface interactions. J Gen Physiol 2017;149:561–576. - PMC - PubMed
    1. Déri S, Borbás J, Hartai T, Hategan L, Csányi B, Visnyovszki Á, Madácsy T, Maléth J, Hegedűs Z, Nagy I, Arora R, Labro AJ, Környei L, Varró A, Sepp R, Ördög B. Impaired cytoplasmic domain interactions cause co-assembly defect and loss of function in the p.Glu293Lys KNCJ2 variant isolated from an Andersen-Tawil Syndrome patient. Cardiovasc Res 2021;117:1923–1934. - PubMed
    1. Adams DS, Uzel SG, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M.. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil syndrome. J Physiol 2016;594:3245–3270. - PMC - PubMed

Publication types

MeSH terms

Substances