Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr:131:104248.
doi: 10.1016/j.compbiomed.2021.104248. Epub 2021 Feb 9.

Convolutional neural networks for breast cancer detection in mammography: A survey

Affiliations
Review

Convolutional neural networks for breast cancer detection in mammography: A survey

Leila Abdelrahman et al. Comput Biol Med. 2021 Apr.

Abstract

Despite its proven record as a breast cancer screening tool, mammography remains labor-intensive and has recognized limitations, including low sensitivity in women with dense breast tissue. In the last ten years, Neural Network advances have been applied to mammography to help radiologists increase their efficiency and accuracy. This survey aims to present, in an organized and structured manner, the current knowledge base of convolutional neural networks (CNNs) in mammography. The survey first discusses traditional Computer Assisted Detection (CAD) and more recently developed CNN-based models for computer vision in mammography. It then presents and discusses the literature on available mammography training datasets. The survey then presents and discusses current literature on CNNs for four distinct mammography tasks: (1) breast density classification, (2) breast asymmetry detection and classification, (3) calcification detection and classification, and (4) mass detection and classification, including presenting and comparing the reported quantitative results for each task and the pros and cons of the different CNN-based approaches. Then, it offers real-world applications of CNN CAD algorithms by discussing current Food and Drug Administration (FDA) approved models. Finally, this survey highlights the potential opportunities for future work in this field. The material presented and discussed in this survey could serve as a road map for developing CNN-based solutions to improve mammographic detection of breast cancer further.

Keywords: Computer-aided detection; Convolutional neural networks; Deep learning; Mammography.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources