Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 18;18(4).
doi: 10.1088/1741-2552/abea62.

A novel consciousness emotion recognition method using ERP components and MMSE

Affiliations

A novel consciousness emotion recognition method using ERP components and MMSE

Xiangwei Zheng et al. J Neural Eng. .

Abstract

Objective.Electroencephalogram (EEG) based emotion recognition mainly extracts traditional features from time domain and frequency domain, and the classification accuracy is often low for the complex nature of EEG signals. However, to the best of our knowledge, the fusion of event-related potential (ERP) components and traditional features is not employed in emotion recognition, and the ERP components are only identified and analyzed by the psychology professionals, which is time-consuming and laborious.Approach.In order to recognize the consciousness and unconsciousness emotions, we propose a novel consciousness emotion recognition method using ERP components and modified multi-scale sample entropy (MMSE). Firstly, ERP components such as N200, P300 and N300 are automatically identified and extracted based on shapelet technique. Secondly, variational mode decomposition and wavelet packet decomposition are utilized to process EEG signals for obtaining different levels of emotional variational mode function (VMF), namelyVMFβ+γ, and then nonlinear feature MMSE of eachVMFβ+γare extracted. At last, ERP components and nonlinear feature MMSE are fused to generate a new feature vector, which is fed into random forest to classify the consciousness and unconsciousness emotions.Main results.Experimental results demonstrate that the average classification accuracy of our proposed method reach 94.42%, 94.88%, and 94.95% for happiness, horror and anger, respectively.Significance.Our study indicates that the fusion of ERP components and nonlinear feature MMSE is more effective for the consciousness and unconsciousness emotions recognition, which provides a new research direction and method for the study of nonlinear time series.

Keywords: ERP components; consciousness emotion recognition; shapelet; variational mode decomposition; wavelet packet decomposition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources