Electromechanically reconfigurable optical nano-kirigami
- PMID: 33637725
- PMCID: PMC7910307
- DOI: 10.1038/s41467-021-21565-x
Electromechanically reconfigurable optical nano-kirigami
Abstract
Kirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale.
Conflict of interest statement
The authors declare no competing interests.
Figures




References
-
- Perks S. Flat-pack physics. Phys. World. 2015;28:21–24. doi: 10.1088/2058-7058/28/12/31. - DOI
-
- Momeni F, Hassani NSMM, Liu X, Ni J. A review of 4D printing. Mater. Des. 2017;122:42–79. doi: 10.1016/j.matdes.2017.02.068. - DOI
-
- Zhang YH, et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2017;2:17019. doi: 10.1038/natrevmats.2017.19. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources